HDlive and Three-Dimensional Imaging in Prenatal Diagnosis of Sirenomelia in the First Trimester: A Case Report and Brief Review of the Literature

Fernando Bonilla-Musoles, Oscar Caballero, Juan Carlos Castillo, Francisco Bonilla Jr, Francisco Raga

ABSTRACT

Herein a case of sirenomelia diagnosed in week 12 by using HDlive and three-dimensional (3D) imaging. These new technologies allowed for an early diagnosis and also depicting realistic images.

Keywords: HDlive, Prenatal diagnosis, Sirenomelia, Three-dimensional ultrasound.

INTRODUCTION

Sirenomelia is an extremely rare congenital malformation characterized by fusion and atrophies of the lower limbs depicting the aspect of a ‘mermaid’s tail’ the mitologic image of a woman with a fish-like inferior half of the body. Sirenomelia is usually considered the most severe form of caudal regression syndrome, while others consider it an independent entity.

Herein we describe a non-invasive prenatal diagnosis of sirenomelia using state-of-the-art three-dimensional (3D) ultrasonographic modalities in the first trimester of pregnancy.

CASE REPORT

A 22-year-old patient, gravida 1, para 0, was referred to our Hospital, at 12 weeks of pregnancy with a suspected diagnosis of sirenomelia based on a two-dimensional (2D) transvaginal US exam. The pregnancy was naturally conceived and the medical background was judged as noncontributory when relevant factors such as consanguinity, drug exposure, alcohol abuse, diabetes or hypertension were excluded.

The ultrasonographic evaluation was performed Voluson E8 scanner (GE Healthcare, Kretz, Zipf, Austria) equipped with a convex 4 to 8 MHz abdominal transducer and a 6 to 12 MHz endovaginal probe both adapted with color and power Doppler as well as 3D/4D and HDlive software.

The initial sonographic transvaginal exam using tomographic ultrasound imaging (TUI) view showed a fetus with normal cardiac activity, normal amniotic fluid, and upper limbs of normal appearance and moving normally. The single fetus had a crown-rump length of 58.6, the nasal bone was clearly seen and the nuchal translucency measured 1, 2 mm. All the neurological structures were normal (Fig. 1). Conventional 3D US and HDlive were applied in order to obtain a detailed evaluation, showing that the lower limbs appeared lean and fused together in fixed extension, with only one femur, remnants of one tibia and absence of feet (Fig. 2). The pelvis region was ambiguous and the bladder, kidneys or extern genitalia were not visible. Consent for abortion was given and postmortem analysis confirmed the presence of only one femur and a hypotrophic tibia, also an intact uterus, a single umbilical artery and anal imperforation were found. The cariotype was 46,XX.

DISCUSSION

The word sirenomelia is derived from the greek words ‘seiren’ meaning siren or ‘mermaid’ and ‘melos’ meaning ‘limb’. This congenital malformation is estimated to occur in 1 out of 60,000 pregnancies.

Sirenomelia or the mermaid syndrome is a rare congenital malformation. The condition is frequently lethal, but the medical literature describes some exceptional cases with variable survival rate after birth.

The ancient mythology represents mermaids as female (Copenhagen’s mermaid is a typical example), but the truth is that male sex is predominant among the condition with a 3:1 rate.
The etiology of the condition remains elusive, but it has been associated to a variety of conditions, such as diabetes,22 cocaine consumption in the first week of pregnancy,23 overexposure to high doses of etretinate,24,25 cyclophosphamide27 trimethoprim,9 or to assisted reproduction techniques (mainly ICSI).26 The latter two associations were confirmed in animal experimentation.

Although several hypotheses have been postulated as the origin of the malformation, the exact etiology of the syndrome remains unknown. A damage occurring early during embryonic development in the caudal mesoderm was initially proposed by some authors28 as to the cause of the limb malformation. This event may result in merging, malrotation and dysgenesis of the lower extremities. Gardner and Breuer (1980)29 postulated that the overdistention of the caudal portion of the neural tube may cause a lateral rotation of mesoderm and the fusion of the early inferior limbs. Later experiments in rodents exposed to high doses of retinoic acid confirmed that an early interference in the process of gastrulation was correlated to the caudal disgenesis syndrome and congenital lower limb malformations.30 The ‘vascular steal’ phenomenon due to aberrant vasculature, which impairs blood flow to the lower part of the body, resulting in abnormal development was also hypothesized as to the origin of the syndrome. A common feature in the mermaid syndrome is the presence of a single large umbilical artery. Arteries below the level of this steal vessel are underdeveloped and tissues dependent upon them for nutrient supply fail to develop properly. This hypothesis suggest that the single lower extremity in sirenomelia results from a failure of the lower limb bud field to be cleaved into two lateral masses rather than of a limb fusion phenomenon.31

The use of prenatal ultrasound in the diagnosis of this rare congenital lower extremity deformity syndrome
was first described in the early eighties. Following those first reports, the advancement of US scan technology allowed for earlier diagnosis at early third/second trimesters and first trimesters by using transvaginal probes, moreover the image quality was highly increased with the use of advanced US technologies, such as Doppler and 3D scan. The first diagnostic clue is usually the presence of oligoamnios (mainly during second trimester scans), due to the bilateral kidney agenesis associated to this pathology. Ultrasonographic confirmation is not always easy, since the morphologic study of the fetus is impaired by the diminished amount of amniotic fluid.

Summarizing a new case of sirenomelia diagnosed in the first trimester by using 2D/3D/4D and HDLive is showed. These new US technologies brought much more clearly pictures.

REFERENCES

