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Ab s t r Ac t 
Artificial intelligence (AI) technology is currently in its third era. Current AI technology is driven by machine learning (ML), particularly deep 
learning (DL). Deep learning is a computer technology that allows a computational model with multiple processing layers to learn the features 
of data. Convolutional neural networks have led to breakthroughs in the processing of images, videos, and audio. In medical imaging, computer-
aided diagnosis algorithms for diabetic retinopathy, diabetic macular edema, tuberculosis, skin lesions, and colonoscopy classifiers are highly 
accurate and comparable to clinician performance. Although the application of AI technology in the field of ultrasound (US) has lagged behind 
other modalities such as radiography, computed tomography (CT), and magnetic resonance imaging (MRI), it has been rapidly applied in the 
field of obstetrics and gynecology in recent years. The results of AI processing of US images to determine the malignancy of ovarian tumors 
are comparable to the International Ovarian Tumor Analysis results, and it is now possible to identify each part of the body and calculate the 
estimated weight from fetal US movies. However, the application of AI to the central nervous system and especially to the fetal heart, which is 
the main part of fetal US morphological examination, is just beginning to progress.
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In t r o d u c t I o n 
Artificial intelligence (AI) technology is currently in its third era, 
comprising the first era of inference and searching in the 1960s, the 
second era of knowledge in the late 1980s, and the current third era 
of the boom. Current AI technology is driven by machine learning 
(ML), particularly deep learning (DL). Deep learning is a computer 
technology that allows a computational model with multiple 
processing layers to learn the features of data.1 Convolutional 
neural networks (CNNs) are designed to automatically extract 
image features2 and have led to breakthroughs in the processing 
of images, video, and audio.1 Convolutional neural networks 
are the algorithms that are most commonly applied to images. 
Since their first introduction in 1989,3 CNNs have been widely 
applied to the classification and segmentation of photographic 
images,4,5 and >80% of the research in medical image analysis 
uses CNN approaches.6 Research on ultrasound (US) images with AI 
technology has been rapidly increasing, as seen from the number of 
publications in peer-reviewed journal articles found in a literature 
search on PubMed (Fig. 1).

Trials of using computers to automatically analyze medical 
images began in the 1960s.7–9 Doi started the systematic 
development of ML and image analysis techniques for medical 
images in the 1980s.10 The first commercial computer-aided 
diagnosis (CAD) system was approved by the United States Food 
and Drug Administration in 1998 for use as a diagnostic aid in 
screening mammography. Research on CAD has progressed, but 
its application in clinical practice has not progressed as expected. 
The main reason for this was that CAD tools developed using 
conventional ML methods did not reach a level of performance 
sufficient to meet physicians’ needs for diagnostic accuracy and 
work efficiency. In AI technology, the major difference between ML 
and DL is that DL learns and makes image decisions on its own for 
features that are dictated by humans in ML. This has opened up the 
possibility of discovering new findings that cannot be detected by 
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Fig. 1: Literature search on PubMed for publications in peer-reviewed 
journals published from 2000 to 2020 using the following keywords: 
[(deep learning) AND (ultrasound)]. The number of reports published 
since 2016 has risen exponentially
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humans and would otherwise be missed. However, the drawback 
is that learning requires a large amount of training data. In medical 
imaging, CADs for diabetic retinopathy,11 diabetic macular edema,11 
tuberculosis,12 skin lesions,13 and colonoscopy14 classifiers are highly 
accurate and have similar performance to that of clinicians.

Ultrasound imaging is the first choice diagnostic imaging 
because it is non-invasive, convenient, and cost-effective compared 
with other medical imaging modalities such as X-ray, computed 
tomography (CT), and magnetic resonance imaging (MRI). 
Ultrasound imaging is widespread in most medical fields. On the 
other hand, US imaging has artifacts resulting in noisy images, 
and small findings and structures can be difficult to see. Thus, the 
application of CAD using US images lags behind that of CT and MRI.

In this review article, we present the current status of the use 
of AI technology in obstetric and gynecological ultrasonography.

ovA r I A n tu m o r 
At most, 10% of ovarian tumors lead to clinical symptoms in 
postmenopausal women and are often discovered incidentally 
during physical examinations, and only 1% are malignant.15 Over 
50% of ovarian tumors occur in women of childbearing potential, 
in which case unnecessary or extensive surgery may result in the 
loss of fertility.16 The average 5-year survival rate for ovarian cancer 
is 45%, making it the malignant tumor with the worst prognosis 
among gynecological tumors.17 The imaging findings are diverse, 
and it is difficult to estimate malignancy. Thus, if an ovarian 
tumor is detected, its malignant status needs to be accurately 
determined. With individualized evaluation, benign masses can be 
managed conservatively with US follow-up and minimally invasive 
laparoscopy to preserve fertility.17 Evaluation of the malignancy 
of ovarian tumors using US images has been performed for many 
years. Unfortunately, the rate of correct diagnosis varies between 
experienced and inexperienced examiners and is often based on 
subjective judgment. In addition, past use of multimodal scoring 
systems, such as the risk of malignancy index (RMI), morphology 
scores, or models based on logistic regression analysis or ML, 
were developed for small populations at a single institution, and 
the heterogeneity of the tumor population and variability in the 
definition of the US terms used contributed to the lack of efficacy. 
The International Ovarian Tumor Analysis (IOTA) Collaborative 
Group was established in 1999 to investigate a large number 
of ovarian tumors recruited at different centers using a clearly 
defined and standardized US protocol to create a predictive model 
that would perform as well as tests performed by experienced 
experts.18 Currently, the IOTA study result is used in 47 centers in 
17 countries, primarily in Europe, China, and Canada. The IOTA’s 
latest model was a simple rule (SR), which is a set of rules based on 
five US features suggestive of the benign lesion (B-features) and 
five features suggestive of a malignant lesion (M-features).19 The 
sensitivity, specificity, and accuracy for the detection of malignancy 
were 91.66, 84.84, and 86.66%, respectively.20

Some studies have used DL in CAD while assessing the 
malignant status of ovarian tumors.21,22 However, there were 
some problems such as the limited number of cases and the use 
of handcrafted image descriptors. To develop CAD using DL to 
discriminate between benign and malignant ovarian tumors, 
Christiansen et al. used transfer learning in three pre-trained DL 
algorithms with 3,077 US ovarian tumor images of 758 patients 
and compared its diagnostic accuracy with that of assessment 
by a US expert. Christiansen et al. trained DL on US images of 

ovarian tumors to determine their malignancy and proved that 
its identification of malignant and borderline malignant tumors 
was comparable to that of experts.23 The sensitivity, specificity, 
and accuracy for discriminating between benign and malignant 
tumors were 96.0, 86.7, and 91.3%, respectively, for the DL model; 
96.0, 88.0, and 92.0%, respectively, for experts; and 96.0, 66.7, and 
81.3%, respectively, for the IOTA’s SR; there were no significant 
differences among methods.23

Fe tA l ult r A s o u n d 
In recent years, several methods have been proposed to detect 
the fetal plane in US images.24–26 Wu et al. proposed a DL model 
to assess the image quality of fetal abdominal images.27 Chen et 
al. proposed a CNN to devise a multi-task learning framework to 
automatically identify different standard planes from US videos.28 
Baumgartner et al. used a single full CNN to detect planes from 
US sweeps and used a saliency map to provide localization of 
fetal structures in real-time.29 Ryou et al. proposed an automated 
system to localize and extract fetal biometric planes from 3D US 
volumes. They localized fetal structures using a structured classical 
random forest and classified fetal classes using a transfer-trained 
CNN.30 One of the goals of CNN-based CAD of fetal US images is to 
automatically show fetal sites to assist clinicians in their evaluation. 
Sridar et al. proposed a decision fusion classification model using 
CNNs to classify 2D fetal US planes; 14 different fetal structure 
images (abdomen, arm, blood vessels, cord insert, face, femur, foot, 
genitals, head, heart, kidney, leg, spine, and hand) were classified 
with an accuracy of 97.1%.31

bo dy We I g h t es t I m At I o n 
Wu et al. compared the CNN model with images judged by three 
doctors and concluded that the performance of the CNN model 
was comparable to that of the doctors’ evaluation.27 Chen et al. 
achieved an area under the curve of 0.95 for detecting the estimated 
fetal weight measurement cross-section from US movies using their 
DL model.28 Yu et al. proposed a method for discriminating fetal 
US-estimated weight measurement cross-sections and obtained an 
accuracy of 93.03%, which was better than that of the conventional 
ML method.27

Fe tA l ce n t r A l ne r vo u s sys t e m 
The number of reports on the automatic recognition of fetal 
heads on US images using DL has been increasing in the past few 
years, and its accuracy has also been improving.32–34 The fetal 
central nervous system is a complex three-dimensional organ that 
continues to change throughout the fetal period. The International 
Society of Ultrasound in Obstetrics and Gynecology (ISUOG) 
guidelines provide reference cross-sections for ultrasonographic 
screening methods.35 Standard axial US planes of craniocerebral 
segmentation are key to classifying potential abnormalities. Xie et 
al. recruited 15,372 normal and 14,047 abnormal fetal brain images 
in standard axial planes and assessed the classification accuracy 
by calculating the sensitivity and specificity for abnormal images 
using precision, recall, and Dice’s coefficient (DICE).36 They reported 
that the sensitivity and specificity for the identification of abnormal 
images were 96.9 and 95.9%, respectively.36 This is the first study 
in which DL was applied to detect fetal central nervous system 
abnormalities using US imaging.
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Fe tA l ec h o c A r d I o g r A p hy 
Fetal cardiac screening is a mainstay of fetal morphology 
examination. The reasons for this are as follows: (1) high frequency of 
occurrence, (2) wide variety of disease variation, and (3) vital organs. 
The incidence of congenital heart disease (CHD) is estimated to be 
4 to 13 per 1,000 live births, which means that approximately 1 in 
100 offspring are born with CHD.37–39 In addition, 1/3 of all cases are 
of severe CHD, which is a major cause of infant mortality. For these 
reasons, it has been thought that observation of the fetal heart 
during the fetal period, prenatal diagnosis of CHD, and neonatal 
treatment will contribute to improved neonatal prognosis.40 In a 
meta-analysis of prenatal diagnosis of severe CHD, 1,373 patients 
with CHD (hypoplastic left heart, right ventricular origin of both 
great vessels, aortic stenosis, severe aortic stenosis, pulmonary 
atresia, and common arterial stem disease) were studied. The odds 
ratio for neonatal mortality was 0.25 [95% confidence interval (CI), 
0.08–0.84] in 31 (3.0%) of 1,047 cases with postnatal diagnosis 
compared to 2 (0.7%) of 297 cases with prenatal diagnosis, 
indicating that treatment planning based on prenatal diagnosis 
contributes to neonatal prognosis. Thus, the usefulness and 
significance of fetal neonatal ultrasonography have been proven.13 
The structure of the heart consists of four chambers (right atrium, 
right ventricle, left atrium, and left ventricle), blood vessels flowing 
into the heart (pulmonary veins, superior and inferior vena cava, 
and ductus venosus), and blood vessels flowing out of the heart 
(aorta, pulmonary artery, and ductus arteriosus). Yoo et al. proposed 
the three-vessel view in 1997,16,17 and Yagel et al. proposed the 
three-vessel and trachea view in 200218 as a method to observe 
this complex three-dimensional structure using US B-mode cross-
sectional images. The three-vessel and three-vessel and trachea 
views were groundbreaking as US sections that could confirm the 
positional relationship of the pulmonary artery and aorta, which 
cross and flow out from the heart, in a single cross-section. The 
detection rate of CHD was improved by observing not only one 
section of the four-chamber cross-section but also the large vessels 
above and below the four-ventricle cross-section, from the stomach 
to the upper heart.41–43 To date, the guidelines for fetal cardiac US 
examinations have been published by various academic societies. 
In 2004, the American Society of Echocardiography published 
guidelines.44 The ISUOG published guidelines for cardiac screening 
examination of the fetus in 2006 that were updated in 2013. The 
American Institute of Ultrasound in Medicine published practice 
guidelines for the performance of fetal cardiac US examinations in 
2010 and 2013. The American Heart Association (AHA) published a 
scientific statement on the diagnosis and treatment of fetal cardiac 
disease in 2014.

Despite the establishment of US screening methods for 
fetal CHD as described above, the diagnosis rate is still low at 
30–60%.45 van Nisselrooij et al. investigated the reasons for this 
by scoring the quality of views used for midterm ultrasonography 
in 114 cases of isolated severe CHD. As a result, they identified 
the following four causes: (1) insufficient technique (images and 
artifacts that cannot be determined), (2) insufficient knowledge 
of CHD (inability to determine abnormality = missed), (3) cross-
sectional images are correct, but abnormalities are not shown 
(abnormalities outside the specified cross-sectional area), and (4) 
frequency of screening, especially if the examiner concentrates 
on a certain period of time rather than a period of time during 
which the examiner is engaged.46 These causes are unique to 
humans and can be solved using AI. Yeo and Romero47 used an 

intelligent navigation technique called FINE to automatically 
acquire screening US images of the fetal heart and identify cardiac 
anatomical abnormalities. This tool was able to show findings 
of fetal cardiac anatomical abnormalities in four CHD cases.47 
However, the identification of the cross-sectional area requires 
manual positioning and remains a semi-automatic determination 
method. More recently, Arnaout et al.48 proposed the use of 
a CNN in a supervised manner, using 685 echocardiograms of 
fetuses between 18 weeks and 24 weeks of gestational age to 
(1) identify the five most important views of the fetal heart, (2) 
measure cardiac structures in segments, and (3) distinguish the 
healthy heart from tetralogy of Fallot and hypoplastic left heart 
syndrome.48 The sensitivity and specificity were 100% and 90%, 
respectively, for the diagnosis of hypoplastic left heart syndrome. 
Although these results seem promising, the main limitations of 
this study are that only two CHDs were evaluated and the DL 
system was trained only on images from one US device without 
considering echocardiographic variability. Therefore, further 
studies need to be performed using larger datasets from different 
US devices.

Fu t u r e us e o F AI I n ob s t e t r I c ult r A s o u n d 
In the future, DL methods for the US will yield promising results. 
However, intra- and inter-reader variability in the acquisition and 
interpretation of US images, as well as the degradation of image 
quality due to artifacts, are important issues that must be resolved 
and are major factors that still lag far behind advances in AI for 
the US compared with AI for CT and MRI. Fetal ultrasonography 
is an imaging examination performed in real-time; i.e., it is an 
examination observed in moving images rather than still images. 
In particular, fetal echocardiography shows a variety of images 
depending on the time axis due to the beating of the heart. 
Therefore, it is necessary to overcome the characteristics of the 
video. Bridge et al. extracted key information from 2D high-
frame rate US videos of the fetal heart. A model for automating 
the interpretation of fetal heart US videos has been proposed.49 
Acoustic shading is an artifact on US images that significantly 
reduces diagnostic efficiency. The same problem exists in image 
processing, and it is an unavoidable problem in the AI processing 
of US images. Such shadows reduce the performance of image 
recognition methods for US images.50–52 Yasutomi et al. proposed 
a method to estimate not only the location of acoustic shadows 
in US images but also their intensity by using an auto-encoding 
structure-based CNN.53 The use of such quality assessment is useful 
for pre-processing CAD of US using DL. This kind of image analysis 
technology is expected to contribute significantly to improving the 
detection rate of CHD in the future.
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