Agenesis of Ductus Venosus Detected at 13 Weeks of Gestation: HDlive Flow Features
Toshiyuki Hata, Saori Bouno, Aya Koyanagi, Riko Takayoshi, Takahito Miyake, Mika Sugihara, Naoki Okimoto
Keywords :
Case report, 3D reconstruction, Agenesis of ductus venosus, Dandy–Walker variant, First trimester, HDlive Flow, Radiant Flow
Citation Information :
Hata T, Bouno S, Koyanagi A, Takayoshi R, Miyake T, Sugihara M, Okimoto N. Agenesis of Ductus Venosus Detected at 13 Weeks of Gestation: HDlive Flow Features. Donald School J Ultrasound Obstet Gynecol 2024; 18 (3):303-306.
Objective: To present three-dimensional reconstruction of agenesis of ductus venosus (ADV) using HDlive Flow in the first trimester of pregnancy.
Case description: A 35-year-old pregnant Japanese woman was referred to our ultrasound clinic at 13 weeks and 6 days of gestation because of fetal generalized skin edema. Color Doppler and HDlive Flow revealed ADV. Moreover, HDlive Flow clearly showed the spatial relationships among the descending aorta, umbilical vein, intrahepatic drainage to portal vein, and inferior vena cava. Chromosome analysis using amniocentesis at 16 weeks and 5 days revealed 46, XY. Second-trimester fetal screening at 18 weeks and 5 days showed partial agenesis of the cerebellar vermis (Dandy–Walker variant) and ADV. Magnetic resonance imaging (MRI) confirmed partial agenesis of the cerebellar vermis at 33 weeks and 6 days of gestation.
Conclusion: HDlive Flow should be used as an adjunctive modality to diagnose fetal vascular abnormalities such as ADV even in the first trimester of pregnancy.
Singh D, Kaur L. Three-dimensional colour Doppler of ductus venosus agenesis the first trimesterin. S Afr J Obstet Gynaecol 2016;22:65–66. DOI: 10.7196.SAJOG/2016.v22i2.1085
Garcia-Delgado R, Garcia-Rodoriguez R, Requejo AR, et al. Echographic features and perinatal outcomes in fetuses with congenital absence of ductus venosus. Acta Obstet Gynecol Scand 2017;96:1205–1213. DOI: 10.1111/aogs.13176
Takita H, Hasegawa J, Arakaki T, et al. Outcomes in the absence of the ductus venosus diagnosed in the first trimester. J Matern Fetal Neonat Med 2018;31:253–257. DOI: 10.1080/14767058.2017.1281241
Souka A, Antsklis P, Tasias K, et al. The incidence of the agenesis of fetal ductus venosus at the 11–13 weeks’ ultrasound examination. Cureus 2022;14:e31748. DOI: 10.7759/cureus.31748
Nagy RD, Iliescu DG. Prenatal diagnosis and outcome of umbilical-portal-systemic venous shunts: experience of a tertiary center and proposal for a new complex type. Diagnostics 2022;12:873. DOI: 10.3390/diagnostics12040873
Shen O, Valsky DV, Messing B, et al. Shunt diameter in agenesis of the ductus venosus with extrahepatic portosystemic shunt impacts on prognosis. Ultrasound Obstet Gynecol 2011;37:184–190. DOI: 10.1002/uog.7702
Thubert T, Levaillant JM, Stos B, et al. Agenesis of the ductus venosus: three-dimensional power Doppler reconstruction. Ultrasound Obstet Gynecol 2012;39:118–120. DOI: 10.1002/uog.10155
Wang Y, Zhang Y, Wang M. Prenatal diagnosis of an aberrant ductus venosus draining into the coronary sinus using two- and three-dimensional echocardiography: a case report. BMC Pregnancy Childbirth 2021;21:392. DOI: 10.1186/s12884-021-03870-x
Achiron R, Kivilevitch Z. Fetal umbilical-portal-systemic venous shunt: in-utero classification and clinical significance. Ultrasound Obstet Gynecol 2016;47:739–747. DOI: 10.1002/uog.14906
Iliescu DG, Tudorache S, Cernea D. Agenesis of ductus venosus with complex intra- and extrahepatic umbilical drainage. J Obstet Gynaecol Res 2014;40:1163–1164. DOI: 10.1111/jog.12339
Turan S, Goetzinger R. First-trimester fetal heart evaluation: time to move forward. Ultrasound Obstet Gynecol 2021;57:677–680. DOI: 10.1002/uog.23572
Hata T, Koyanagi A, Takayoshi R, et al. Mitral and aortic atresia, ductus arteriosus aneurysm, and aortic tortuosity: first- and second-trimester HDlive flow features. Donald School J Ultrasound Obstet Gynecol 2021;15:414–416. DOI: 10.5005/jp-journals-10009-1825
Hata T, Koyanagi A, Kawahara T, et al. HDlive Flow Silhouette with spatiotemporal image correlation for assessment of fetal cardiac structures at 12 to 14 + 6 weeks of gestation. J Perinat Med 2022;50:313–318. DOI: 10.1515/jpm-2021-0252
Malho AS, Bravo-Valenzuela NJ, Ximenes R, et al. Antenatal diagnosis of congenital heart disease by 3D ultrasonography using spatiotemporal image correlation with HDlive Flow and HDlive Flow Silhouette rendering modes. Ultrasonography 2022; 41:578–596. DOI: 10.14366/usg.21165
Staboulidou I, Pereira S, Cruz Jde J, et al. Prevalence and outcome of absence of ductus venosus at 11(+0) to 13(+6) weeks. Fetal Diagn Ther 2011;30:35–40. DOI: 10.1159/000323593
Iliescu DG, Cara ML, Tudorache S, et al. Agenesis of ductus venosus in sequential first and second trimester screening. Prenat Diagn 2014;34:1099–1105. DOI: 10.1002/pd.4434
Berg C, Kamil D, Geipel A, et al. Absence of ductus venosus—importance of umbilical venous drainage site. Ultrasound Obstet Gynecol 2006;28:275–281. DOI: 10.1002/uog.2811
Jaeggi ET, Fouron JC, Hornberger LK, et al. Agenesis of the ductus venosus that is associated with extrahepatic umbilical vein drainage: prenatal features and clinical outcome. Am J Obstet Gynecol 2002;187:1031–1037. DOI: 10.1067/mob.2002.126292