Evaluation of Kurjak Antenatal Neurodevelopmental Test in Hypothyroidic Pregnant Women
Zacharias Fasoulakis, Maria Papamichail, Konstantinos Tasias, Maria-Ioanna Chatziioannou, Afroditi Pegkou, Asim Kurjak, George Daskalakis, Panagiotis Antsaklis
Keywords :
Euthyroid, Fetal behavior, Hypothyroidism, Kurjak's Antenatal Neurodevelopmental Test
Citation Information :
Fasoulakis Z, Papamichail M, Tasias K, Chatziioannou M, Pegkou A, Kurjak A, Daskalakis G, Antsaklis P. Evaluation of Kurjak Antenatal Neurodevelopmental Test in Hypothyroidic Pregnant Women. Donald School J Ultrasound Obstet Gynecol 2024; 18 (3):212-218.
Objective: Assessing fetal behavior in utero is challenging and of great value for perinatal screening, but the evolution of ultrasonography has led to a better comprehension of fetal pathology. Antenatal screening for early detection of fetal neurological well-being has provided valuable information. The aim of this study is to determine a possible correlation between hypothyroidism in pregnancy and altered fetal behavior.
Materials and methods: Kurjak antenatal neurodevelopmental test (KANET) was applied from 28 weeks to 38 weeks in 85 gestations (group A) with hypothyroidism and 87 euthyroid pregnant women (group B).
Results: No statistically significant differences were observed considering maternal age (29.2 ± 4.9 years for group A vs 29.7 ± 3.3 years for group B) and gestational age (GA) (33 ± 1.6 weeks for hypothyroidic compared to 33 ± 2.1 weeks for euthyroidic group). The control group reported higher KANET scores than group A.
Conclusion: It appears that fetal behavior differences are observed in women with hypothyroidism.
Dhanwal DK, Bajaj S, Rajput R, et al. Prevalence of hypothyroidism in pregnancy: an epidemiological study from 11 cities in 9 states of India. Indian J Endocrinol Metab 2016;20(3):387–390. DOI: 10.4103/2230-8210.179992
Abadi KK, Jama AH, Legesse AY, et al. Prevalence of hypothyroidism in pregnancy and its associations with adverse pregnancy outcomes among pregnant women in a general hospital: a cross sectional study. Int J Womens Health 2023;15:1481–1490. DOI: 10.2147/IJWH.S429611
Moog NK, Entringer S, Heim C, et al. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 2017;342:68–100. DOI: 10.1016/j.neuroscience.2015.09.070
Joseph R. Fetal brain and cognitive development. Dev Rev 1999;20:81–98. DOI: 10.1006/drev.1999.0486
Rees S, Harding R. Brain development during fetal life: influences of the intra-uterine environment. Neurosci Lett 2004;361(1-3):111–114. DOI: 10.1016/j.neulet.2004.02.002
Henrichs J, Bongers-Schokking JJ, Schenk JJ, et al. Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: the generation R study. J Clin Endocrinol Metab 2010;95(9):4227–4234. DOI: 10.1210/jc.2010-0415
Strijbis EM, Oudman I, van Essen P, et al. Cerebral palsy and the application of the international criteria for acute intrapartum hypoxia. Obstet Gynecol 2006;107(6):1357–1365. DOI: 10.1097/01.AOG.0000220544.21316.80
de Vries JI, Fong BF. Changes in fetal motility as a result of congenital disorders: an overview. Ultrasound Obstet Gynecol 2007;29(5):590–599. DOI: 10.1002/uog.3917
Yigiter AB, Kavak ZN. Normal standards of fetal behavior assessed by four-dimensional sonography. J Matern Fetal Neonatal Med 2006;19(11):707–721. DOI: 10.1080/14767050600924129
Kurjak A, Carrera JM, Stanojevic M, et al. The role of 4D sonography in the neurological assessment of early human development. Ultrasound Rev Obstet Gynecol 2004;4:148–159. DOI: 10.3109/14722240400017075
Antsaklis P, Antsaklis A. The assessment of fetal neurobehavior with four-dimensional ultrasound: the Kurjak antenatal neurodevelopmental test. Donald School J Ultrasound Obstet Gynecol 2012;6:362–375. DOI: 10.5005/jp-journals-10009-1259
Kurjak A, Tikvica A, Stanojevic M, et al. The assessment of fetal neurobehavior by three-dimensional and four-dimensional ultrasound. J Matern Fetal Neonatal Med 2008;21:675–684. DOI: 10.1080/14767050802212166
Amiel-Tison C, Gosselin J, Kurjak A. Neurosonography in the second half of fetal life: a neonatologist's point of view. J Perinat Med 2006;34(6):437–446. DOI: 10.1515/JPM.2006.088
Kurjak A, Talic A, Honemeyer U, et al. Comparison between antenatal neurodevelopmental test and fetal Doppler in the assessment of fetal well being. J Perinat Med 2013;41(1):107–114. DOI: 10.1515/jpm-2012-0018
Cosmi EV, Anceschi MM, Cosmi E, et al. Ultrasonographic patterns of fetal breathing movements in normal pregnancy. Int J Gynaecol Obstet 2003;80:285–290. DOI: 10.1016/s0020-7292(02)00384-3
de Vries JI, Visser GH, Prechtl HF. The emergence of fetal behaviour. II. Quantitative aspects. Early Hum Dev 1985;12(2):99–120. DOI: 10.1016/0378-3782(85)90174-4
Edelberg SC, Dierker L, Kalhan S, et al. Decreased fetal movements with sustained maternal hyperglycemia using the glucose clamp technique. Am J Obstet Gynecol 1987;156(5):1101–1105. DOI: 10.1016/0002-9378(87)90118-9
Stagnaro-Green A, Abalovich M, Alexander E, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 2011;21(10):1081–1125. DOI: 10.1089/thy.2011.0087
Glinoer D. The regulation of thyroid function in pregnancy: pathways of endocrine adaptation from physiology to pathology. Endocr Rev 1997;18(3):404–433. DOI: 10.1210/edrv.18.3.0300
Pop VJ, Kuijpens JL, van Baar AL, et al. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol (Oxf) 1999;50(2):149–155. DOI: 10.1046/j.1365-2265.1999.00639.x
Negro R, Greco G, Mangieri T, et al. The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J Clin Endocrinol Metab 2007;92(4):1263–1268. DOI: 10.1210/jc.2006-1821
Talat A, Khan AA, Nasreen S, et al. Thyroid screening during early pregnancy and the need for trimester specific reference ranges: a cross-sectional study in Lahore, Pakistan. Cureus 2019;11(9):e5661. DOI: 10.7759/cureus.5661
Allen CL, Kisilevsky BS. Fetal behavior in diabetic and nondiabetic pregnant women: an exploratory study. Dev Psychobiol 1999;35(1):69–80. PMID: 10397898.
Haddow JE, Palomaki GE, Allan WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 1999;341(8):549–555. DOI: 10.1056/NEJM199908193410801
Meena A, Nagar P. Pregnancy outcome in euthyroid women with anti-thyroid peroxidase antibodies. J Obstet Gynaecol India 2016;66(3):160–165. DOI: 10.1007/s13224-014-0657-6
Petersen TG, Andersen AMN, Uldall P, et al. Maternal thyroid disorder in pregnancy and risk of cerebral palsy in the child: a population-based cohort study. BMC Pediatr 2018;18:181. DOI: 10.1186/s12887-018-1152-5
Kuno A, Akiyama M, Yamashiro C, et al. Three-dimensional sonographic assessment of fetal behavior in the early second trimester of pregnancy. J Ultrasound Med 2001;20(12):1271–1275. DOI: 10.7863/jum.2001.20.12.1271
Miskovic B, Vasilj O, Stanojevic M, et al. The comparison of fetal behavior in high risk and normal pregnancies assessed by four dimensional ultrasound. J Matern Fetal Neonatal Med 2010;23(12):1461–1467. DOI: 10.3109/14767051003678200
Mulder EJ, O'Brien MJ, Lems YL, et al. Body and breathing movements in near-term fetuses and newborn infants of type-1 diabetic women. Early Hum Dev 1990;24(2):131–152. DOI: 10.1016/0378-3782(90)90143-7
Nazarpour S, Ramezani Tehrani F, Simbar M, et al. Thyroid dysfunction and pregnancy outcomes. Iran J Reprod Med 2015;13(7):387–396. PMID: 26494985.