Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 17 , ISSUE 1 ( January-March, 2023 ) > List of Articles

REVIEW ARTICLE

Brain Assessment from Fetus to Neonate in Terms of Morphology and Function: Role of Neonatologist

Milan Stanojevic, Asim Kurjak, Edin Međedović

Keywords : Brain, Four-dimensional, Fetal behavior, Function, Neonate, Structure, Ultrasound

Citation Information : Stanojevic M, Kurjak A, Međedović E. Brain Assessment from Fetus to Neonate in Terms of Morphology and Function: Role of Neonatologist. Donald School J Ultrasound Obstet Gynecol 2023; 17 (1):97-102.

DOI: 10.5005/jp-journals-10009-1960

License: CC BY-NC 4.0

Published Online: 14-04-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Assessment of the structure and function of the brain was enabled by the development of ultrasound (US) technology, which may depict how complicated developmental processes of the brain structure in utero can result in complex behavior of embryo and fetus. Extrauterine life is the continuation of intrauterine life, and transposing our knowledge of brain structure and function from prenatal to postnatal life is an important approach to making the distinction between normal and abnormal brain development and the early diagnosis of various structural or functional brain abnormalities. The invention of four-dimensional US (4D US) enabled the introduction of the Kurjak Antenatal Neurodevelopmental Test (KANET), which opened up a new field of fetal neurology. The KANET is a standardized and comprehensive method to evaluate fetal neurological condition objectively and reproducibly by observation of fetal behavior and general movements (GMs). Based on the existing investigation, if the KANET score is normal, then there is a high probability that the development of the infant will be normal, with a very low probability that the child with developmental delay would have been missed, while the prediction is more complicated if the score is abnormal or borderline.


HTML PDF Share
  1. Tubiana M. Wilhelm Conrad Röntgen et la découverte des rayons X [Wilhelm Conrad Röntgen and the discovery of X-rays]. Bull Acad Natl Med 1996;180(1):97–108.
  2. Bhattacharyya KB. Godfrey Newbold Hounsfield (1919-2004): the man who revolutionized neuroimaging. Ann Indian Acad Neurol 2016;19(4):448–450. DOI: 10.4103/0972-2327.194414
  3. Vasung L, Abaci Turk E, Ferradal SL, et al. Exploring early human brain development with structural and physiological neuroimaging. Neuroimage 2019;187:226–254. DOI: 10.1016/j.neuroimage.2018.07.041
  4. Pooh RK, Kurjak A. Novel application of three-dimensional HDlive imaging in prenatal diagnosis from the first trimester. J Perinat Med 2015;43(2):147–158. DOI: 10.1515/jpm-2014-0157
  5. Poon LC, Sahota DS, Chaemsaithong P, et al. Transvaginal three-dimensional ultrasound assessment of Sylvian fissures at 18-30 weeks’ gestation. Ultrasound Obstet Gynecol 2019;54(2):190–198. DOI: 10.1002/uog.20172
  6. Kurjak A, Stanojević M, Salihagić-Kadić A, et al. Is four-dimensional (4D) ultrasound entering a new field of fetal psychiatry? Psychiatr Danub 2019;31(2):133–140. DOI: 10.24869/psyd.2019.133
  7. Kurjak A, Antsaklis P, Stanojevic M, et al. Multicentric studies of the fetal neurobehavior by KANET test. J Perinat Med 2017;45(6):717–727. DOI: 10.1515/jpm-2016-0409
  8. Kurjak A, Antsaklis P, Stanojevic M, et al. Fetal behavior assessed by four-dimensional sonography. Donald Sch J Ultrasound Obstet Gynecol 2017;11(2):146–168. DOI: 10.5005/jp-journals-10009-1516
  9. Kadic AS, Kurjak A. Cognitive functions of the fetus. Ultraschall Med 2018;39(2):181–189. DOI: 10.1055/s-0043-123469
  10. Kurjak A, Antsaklis P. Recent advances in the study of fetal brain structure and function. Sci Art Relig 2022;1(1):81–93. DOI: 10.5005/jp-journals-11005-0013
  11. Stanojevic M, Kurjak A. Continuity from fetal to neonatal behavior: lessons learned and future challenges. Donald Sch J Ultrasound Obstet Gynecol 2011;5(2):107–118. DOI: 10.5005/jp-journals-10009-1185
  12. Stanojevic M, Kurjak A, Salihagić-Kadić A, et al. Neurobehavioral continuity from fetus to neonate. J Perinat Med 2011;39(2):171–177. DOI: 10.1515/jpm.2011.004
  13. Stanojevic M, Zaputovic S, Bosnjak AP. Continuity between fetal and neonatal neurobehavior. Semin Fetal Neonatal Med 2012;17(6):324–329. DOI: 10.1016/j.siny.2012.06.006
  14. Chaudhury S, Sharma V, Kumar V, et al. Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev 2016;38(4):355–363. DOI: 10.1016/j.braindev.2015.10.008
  15. Bethlehem RAI, Seidlitz J, White SR, et al. Brain charts for the human lifespan. Nature 2022;604(7906):525–533. DOI: 10.1038/s41586-022-04554-y
  16. Kostović I. Prenatal development of nucleus basalis complex and related fiber systems in man: a histochemical study. Neuroscience 1986;17(4):1047–1077. DOI: 10.1016/0306-4522(86)90077-1
  17. Sun SY, Li XW, Cao R, et al. Correlative assembly of subsynaptic nanoscale organizations during development. Front Synaptic Neurosci 2022;14:748184. DOI: 10.3389/fnsyn.2022.748184
  18. Kurjak A, Stanojevć M, Barišić LS, Radončić E. Kurjak Antenatal Neurodevelopmental Test (KANET): A Useful Tool for Fetal Neurodevelopmental Assessment. In: Schenker JG, Genazzani AR, Sciarra JJ, Mettler L, Birkhaeuser MH (eds). Clinical Management of Infertility. Reproductive Medicine for Clinicians vol 2. Springer, Cham, 2021:271–301. DOI.org/10.1007/978-3-030-71838-1_19.
  19. Ahmed B, Kurjak A, Andonotopo W, et al. Fetal behavioral and structural abnormalities in high risk fetuses assessed by 4D sonography. Ultrasound Rev Obstet Gynecol 2005;5(4):275–287. DOI: 10.3109/14722240500386867
  20. Wozniak JR, Riley EP, Charness ME. Clinical presentation, diagnosis, and management of fetal alcohol spectrum disorder. Lancet Neurol 2019;18(8):760–770. DOI: 10.1016/S1474-4422(19)30150-4
  21. Khan I, Leventhal BL. Developmental delay. StatPearls 2022.
  22. Himmelmann K, Hagberg G, Wiklund LM, et al. Dyskinetic cerebral palsy: a population-based study of children born between 1991 and 1998. Dev Med Child Neurol 2007;49(4):246–251. DOI: 10.1111/j.1469-8749.2007.00246.x
  23. Alriksson-Schmidt AI, Ahonen M, Andersen GL, et al. CP-North: living life in the Nordic countries? A retrospective register research protocol on individuals with cerebral palsy and their parents living in Sweden, Norway, Denmark, Finland and Iceland. BMJ Open 2019;9(10):e024438. DOI: 10.1136/bmjopen-2018-024438
  24. Hollung SJ, Hägglund G, Gaston M, et al. Point prevalence and motor function of children and adolescents with cerebral palsy in Scandinavia and Scotland: a CP-North study. Dev Med Child Neurol 2020;63(6):721–728. DOI: 10.1111/dmcn.14764
  25. Hägglund G, Hollung SJ, Ahonen M, et al. Treatment of spasticity in children and adolescents with cerebral palsy in Northern Europe: a CP-North registry study. BMC Neurol 2021;21(1):276. DOI: 10.1186/s12883-021-02289-3
  26. Hemminki K, Li X, Sundquist K, Sundquist J. High familial risks for cerebral palsy implicate partial heritable aetiology. Paediatr Perinat Epidemiol 2007;21(3):235–341. DOI: 10.1111/j.1365-3016.2007.00798.x
  27. Jin SC, Lewis SA, Bakhtiari S, Zeng X, et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2021;53(3):412. DOI: 10.1038/s41588-021-00780-8
  28. Li N, Zhou P, Tang H, et al. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain 2022;145(1):119–141. DOI: 10.1093/brain/awab209
  29. Morgan C, Fetters L, Adde L, et al. Early intervention for children aged 0 to 2 years with or at high risk of cerebral palsy: international clinical practice guideline based on systematic reviews. JAMA Pediatr 2021;175(8):846–858. DOI: 10.1001/jamapediatrics.2021.0878
  30. Centers for Disease Control and Prevention. Cerebral Palsy. Published 2020. https://www.cdc.gov/ncbddd/cp/index.html (Accessed January 17, 2023)
  31. Palmer FB. Strategies for the early diagnosis of cerebral palsy. J Pediatr 2004;145(2):S8–S11. DOI: 10.1016/j.jpeds.2004.05.016
  32. Morgan C, Romeo DM, Chorna O, et al. The pooled diagnostic accuracy of neuroimaging, general movements, and neurological examination for diagnosing cerebral palsy early in high-risk infants: a case control study. J Clin Med 2019;8(11):1879. DOI: 10.3390/jcm8111879
  33. Apaydın U, Erol E, Yıldız A, et al. The use of neuroimaging, Prechtl's general movement assessment and the Hammersmith infant neurological examination in determining the prognosis in 2-year-old infants with hypoxic ischemic encephalopathy who were treated with hypothermia. Early Hum Dev 2021;163:105487. DOI: 10.1016/j.earlhumdev.2021.105487
  34. Connors R, Sackett V, Machipisa C, et al. Assessing the utility of neonatal screening assessments in early diagnosis of cerebral palsy in preterm infants. Brain Sci 2022;12(7):847. DOI: 10.3390/brainsci12070847
  35. Wu YW, Croen LA, Shah SJ, et al. Cerebral palsy in a term population: risk factors and neuroimaging findings. Pediatrics 2006;118;690–697. DOI: 10.1542/peds.2006-0278
  36. Aravamuthan BR, Fehlings D, Shetty S, et al. Variability in cerebral palsy diagnosis. Pediatrics 2021;147(2):e2020010066. DOI: 10.1542/peds.2020-010066
  37. Aravamuthan BR, Shevell M, Kim et al. Role of child neurologists and neurodevelopmentalists in the diagnosis of cerebral palsy: a survey study. Neurology 2020;95(21):962–972. DOI: 10.1212/WNL.0000000000011036
  38. Scher MS. “The first thousand days” define a fetal/neonatal neurology program. Front Pediatr 2021;9:683138. DOI: 10.3389/fped.2021.683138
  39. Amiel-Tison C. Update of the Amiel-Tison neurologic assessment for the term neonate or at 40 weeks corrected age. Pediatr Neurol 2002;27(3):196–212. DOI: 10.1016/s0887-8994(02)00436-8
  40. Gosselin J, Gahagan S, Amiel-Tison C. The Amiel-Tison neurological assessment at term: conceptual and methodological continuity in the course of follow-up. Ment Retard Dev Disabil Res Rev 2005;11(1):34–51. DOI: 10.1002/mrdd.20049
  41. Stahlmann N, Härtel C, Knopp A, et al. Predictive value of neurodevelopmental assessment versus evaluation of general movements for motor outcome in preterm infants with birth weights <1500 g. Neuropediatrics 2007;38(2):91–99. DOI: 10.1055/s-2007-984450
  42. Romeo DM, Ricci D, Brogna C, et al. Use of the Hammersmith infant neurological examination in infants with cerebral palsy: a critical review of the literature. Dev Med Child Neurol 2016;58(3):240–245. DOI: 10.1111/dmcn.12876
  43. Harpster K, Merhar S, Priyanka Illapani VS, et al. Associations between early structural magnetic resonance imaging, Hammersmith infant neurological examination, and general movements assessment in infants born very preterm. J Pediatr 2021;232:80–86. DOI: 10.1016/j.jpeds.2020.12.056
  44. Kurjak A, Stanojevic M, Andonotopo W, et al. Fetal behavior assessed in all three trimesters of normal pregnancy by four-dimensional ultrasonography. Croat Med J 2005;46(5):772–780.
  45. Andonotopo W, Medic M, Salihagic-Kadic A, et al. The assessment of fetal behavior in early pregnancy: comparison between 2D and 4D sonographic scanning. J Perinat Med 2005;33(5):406–414. DOI: 10.1515/JPM.2005.073
  46. Einspieler C, Prechtl HFR, Bos AF, et al. Prechtl's method on the qualitative assessment of general movements in preterm, term and young infants. Mac Keith Press, Cambridge, 2004.
  47. Bennema AN, Schendelaar P, Seggers J, et al. Predictive value of general movements’ quality in low-risk infants for minor neurological dysfunction and behavioural problems at preschool age. Early Hum Dev 2016;94:19–24. DOI: 10.1016/j.earlhumdev.2016.01.010
  48. Kwong AKL, Fitzgerald TL, Doyle LW, et al. Predictive validity of spontaneous early infant movement for later cerebral palsy: a systematic review. Dev Med Child Neurol 2018;60(5):480–489. DOI: 10.1111/dmcn.13697
  49. Seesahai J, Luther M, Church PT, et al. The assessment of general movements in term and late-preterm infants diagnosed with neonatal encephalopathy, as a predictive tool of cerebral palsy by 2 years of age-a scoping review. Syst Rev 2021;10(1):226. DOI: 10.1186/s13643-021-01765-8
  50. Kurjak A, Miskovic B, Stanojevic M, et al. New scoring system for fetal neurobehavior assessed by three- and four-dimensional sonography. J Perinat Med 2008;36(1):73–81. DOI: 10.1515/JPM.2008.007
  51. Kurjak A, Stanojević M, Predojević M, et al. Neurobehavior in fetal life. Semin Fetal Neonatal Med 2012;17(6):319–323. DOI: 10.1016/j.siny.2012.06.005
  52. Kurjak A, Stanojević M, Spalldi Barišić L, et al. A critical appraisal of Kurjak antenatal neurodevelopmental test: five years of wide clinical use. Donald School J Ultrasound Obstet Gynecol 2020;14(4):304–310. DOI: 10.5005/jp-journals-10009-1669
  53. Kurjak A, Stanojevic M, Antsaklis P. Recent results and future challenges in the assessment of fetal brain function. Donald School J Ultrasound Obstet Gynecol 2021;15(1):10–37. DOI: 10.5005/jp-journals-10009-1682
  54. Prechtl HF. Developmental neurology of the fetus. Baillieres Clin Obstet Gynaecol 1988;2(1):21–36. DOI: 10.1016/s0950-3552(88)80061-0
  55. Visser GH, Mulder EJ, Prechtl HF. Studies on developmental neurology in the human fetus. Dev Pharmacol Ther 1992;18(3-4):175–183.
  56. Visser GH, Mulder EJ, Tessa Ververs FF. Fetal behavioral teratology. J Matern Fetal Neonatal Med 2010;23(Suppl 3):14–16. DOI: 10.3109/14767058.2010.517717
  57. Novak I, Morgan C, Adde L, et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr 2017;171:897–907. DOI: 10.1001/jamapediatrics.2017.1689
  58. Balta D, Kuo H, Wang J, et al. Characterization of infants’ general movements using a commercial rgb-depth sensor and a deep neural network tracking processing tool: an exploratory study. Sensors (Basel) 2022;22(19):7426. DOI: 10.3390/s22197426
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.