Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 15 , ISSUE 3 ( July-September, 2021 ) > List of Articles

PICTURE OF THE MONTH

Transposition of Great Arteries Diagnosed at 20 Weeks of Gestation: HDlive Flow Features

Toshiyuki Hata, Aya Koyanagi, Riko Takayoshi, Yuichiro Nakai, Takahito Miyake

Keywords : 3D/4D fetal echocardiography, HDlive Flow, Prenatal diagnosis, STIC, Transposition of great arteries

Citation Information : Hata T, Koyanagi A, Takayoshi R, Nakai Y, Miyake T. Transposition of Great Arteries Diagnosed at 20 Weeks of Gestation: HDlive Flow Features. Donald School J Ultrasound Obstet Gynecol 2021; 15 (3):215-217.

DOI: 10.5005/jp-journals-10009-1713

License: CC BY-NC 4.0

Published Online: 30-09-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

We present a case of transposition of great arteries (TGA) diagnosed prenatally using HDlive Flow with spatiotemporal image correlation (STIC) at 20 weeks and 5 days of gestation. Right-sided stomach was noted on routine second-trimester screening. Ventricular septal defect, pericardial effusion, and parallel arrangement of great arteries were identified using two-dimensional fetal echocardiography and color Doppler. HDlive Flow with STIC clearly showed an aorta exiting the right ventricle and a pulmonary artery exiting the left ventricle in parallel. The diagnosis of TGA was confirmed antenatally. HDlive Flow with STIC should be an adjunctive technology to conventional fetal echocardiography for the prenatal diagnosis of TGA.


PDF Share
  1. Goncalves LF, Espinoza J, Romero R, et al. A systematic approach to prenatal diagnosis of transposition of the great arteries using 4-dimensional ultrasonography with spatiotemporal image correlation. J Ultrasound Med 2004;23(9):1225–1231. DOI: 10.7863/jum.2004.23.9.1225.
  2. Goncalves LF, Espinoza J, Lee W, et al. A new approach to fetal echocardiography. Digital casts of the fetal cardiac chambers and great vessels for detection of congenital heart disease. J Ultrasound Med 2005;24(4):415–424. DOI: 10.7863/jum.2005.24.4.415.
  3. Gindes L, Hegesh J, Weisz B, et al. Three and four dimensional ultrasound: a novel method for evaluating fetal cardiac anomalies. Prenat Diagn 2009;29(7):645–653. DOI: 10.1002/pd.2257.
  4. Zhang M, Pu DR, Zhou QC, et al. Four-dimensional echocardiography with B-flow imaging and spatiotemporal image correlation in the assessment of congenital heart defects. Prenat Diagn 2010;30(5):443–448. DOI: 10.1002/pd.2492.
  5. Hata T, Tanaka H, Noguchi J, et al. Four-dimensional volume-rendered imaging of the fetal ventricular outflow tracts and great arteries using inversion mode for detection of congenital heart disease. J Obstet Gynaecol 2010;36(3):513–518. DOI: 10.1111/j.1447-0756.2010.01224.x.
  6. Araujo Junior E, Tonni G, Bravo-Valenzuela NJ, et al. Assessment of fetal congenital heart diseases by 4-dimensional ultrasound using spatiotemporal image correlation. Ultrasound Q 2018;34(1):11–17. DOI: 10.1097/RUQ.0000000000000328.
  7. Hata T, Ito M, Nitta E, et al. HDlive Flow silhouette mode for diagnosis of ectopia cordis with a left ventricular diverticulum at 15 weeks’ gestation. J Ultrasound Med 2018;37(10):2465–2467. DOI: 10.1002/jum.14583.
  8. Hata T, Hanaoka U, Kanenishi K. HDliveFlow silhouette mode for fetal heart. Donald School J Ultrasound Obstet Gynecol 2019;13(1):10–22. DOI: 10.5005/jp-journals-10009-1581.
  9. Hata T, Koyanagi A, Yamanishi T, et al. Success rate of five cardiac views using HDlive Flow with spatiotemporal image correlation at 18-21 and 28-31 weeks of gestation. J Perinat Med 2020;48(4):384–388. DOI: 10.1515/jpm-2019-0434.
  10. Hata T, Koyanagi A, Yamanishi T, et al. Three-dimensional fetal echocardiographic assessment of persistent left superior vena cava with absent right superior vena cava. Donald School J Ultrasound Obstet Gynecol 2020;14(4):346–348. DOI: 10.5005/jp-journals-10009-1671.
  11. Takayoshi R, Hata T, Bouno S, et al. HDlive Flow for the diagnosis of double outlet right ventricle at 19 weeks of gestation. Donald School J Ultrasound Obstet Gynecol 2020;14(4):351–354. DOI: 10.5005/jp-journals-10009-1673.
  12. Ito M, AboEllail MAM, Yamamoto K, et al. HDlive Flow silhouette mode and spatiotemporal image correlation for diagnosing congenital heart disease. Ultrasound Obstet Gynecol 2017;50(3):411–415. DOI: 10.1002/uog.17519.
  13. Bravo-Valenzuela NJ, Peixoto AB, Araujo Junior E. Prenatal diagnosis of transposition of the great arteries: an updated review. Ultrasonography 2020;39(4):331–339. DOI: 10.14366/usg.20055.
  14. Chaoui R, Abuhamad A, Martins J, et al. Recent development in three and four dimension fetal echocardiography. Fetal Diagn Ther 2020;47(Suppl. 5):345–353. DOI: 10.1159/000500454.
  15. van Velzen CL, Haak MC, Reijnders G, et al. Prenatal detection of transposition of the great arteries reduces mortality and morbidity. Ultrasound Obstet Gynecol 2015;45(3):320–325. DOI: 10.1002/uog.14689.
  16. Ravi P, Mills L, Fruitman D, et al. Population trends in prenatal detection of transpositions of great arteries: impact of obstetric screening ultrasound guidelines. Ultrasound Obstet Gynecol 2018;51(5):659–664. DOI: 10.1002/uog.17496.
  17. Escobar-Diaz MC, Freud LR, Bueno A, et al. Prenatal diagnosis of transposition of the great arteries over a 20-year period: improved but imperfect. Ultrasound Obstet Gynecol 2015;45(6):678–682. DOI: 10.1002/uog.14751.
  18. Shih JC, Shyu MK, Su YN, et al. ‘Big-eyed frog’ sign on spatiotemporal image correlation (STIC) in the antenatal diagnosis of transposition of the great arteries. Ultrasound Obstet Gynecol 2008;32(6):762–768. DOI: 10.1002/uog.5369.
  19. Ishii Y, Inamura N, Kawazu Y, et al. ‘I-shaped’ sign in the upper mediastinum: a novel potential marker for antenatal diagnosis of d-transposition of the great arteries. Ultrasound Obstet Gynecol 2013;41(6):667–671. DOI: 10.1002/uog.12312.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.