Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 15 , ISSUE 2 ( April-June, 2021 ) > List of Articles

REVIEW ARTICLE

Assessment of Fetal Neurobehavior in Special Cases

Citation Information : Assessment of Fetal Neurobehavior in Special Cases. Donald School J Ultrasound Obstet Gynecol 2021; 15 (2):195-202.

DOI: 10.5005/jp-journals-10009-1694

License: CC BY-NC 4.0

Published Online: 02-07-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

In utero life and particularly fetal brain development and fetal behavior and more specifically assessment and imaging of the fetal nervous system, is a field of great interest in perinatal medicine, with many unanswered questions. Human brain development is a very complex, but also extremely structured process commencing the first weeks after conception and continuing for a very long time, even throughout adult life. As already mentioned fetal neurobehavior can be affected by many parameters and can be altered by environmental, racial, and maternal factors, by maternal disease, administration of drugs and neurotrophic agents, and many other factors. We analyze some special circumstances that affect fetal neurobehavior.


HTML PDF Share
  1. Yigiter AB, Kavak ZN. Normal standards of fetal behavior assessed by four-dimensional sonography. J Matern Fetal Neonatal Med 2006;19(11):707–721. DOI: 10.1080/14767050600924129.
  2. Rees S, Harding R. Brain development during fetal life: influences of the intra-uterine environment. Neurosci Lett 2004;361(1-3):111–114. DOI: 10.1016/j.neulet.2004.02.002.
  3. Joseph R. Fetal brain and cognitive development. Dev Rev 1999;20(1):81–98. DOI: 10.1006/drev.1999.0486.
  4. Antsaklis P, Antsaklis A. The assessment of fetal neurobehavior with four-dimensional ultrasound: the Kurjak antenatal neurodevelopmental test. Donald School J Ultrasound in Obstet Gynecol 2012;6(4):362–375. DOI: 10.5005/jp-journals-10009-1259.
  5. Eidelman AI. The living fetus–dilemmas in treatment at the edge of viability. In: Blazer S, Zimmer EZ, ed. The embryo: Scientific Discovery and Medical Ethics. Basel: Karger; 2005. 351–370.
  6. Stanojevic M, Zaputovic S, Bosnjak AP. Continuity between fetal and neonatal neurobehavior. Semin Fetal Neonatal Med 2012;17(6):324–329. DOI: 10.1016/j.siny.2012.06.006.
  7. Kurjak A, Carrera J, Stanojevic M, et al. The role of 4D sonography in the neurological assessment of early human development. Ultrasound Rev Obstet Gynecol 2004;4(3):148–159. DOI: 10.3109/14722240400017075.
  8. Strijbis EM, Oudman I, van Essen P, et al. Cerebral palsy and the application of the international criteria for acute intrapartum hypoxia. Obstet Gynecol 2006;107(6):1357–1365. DOI: 10.1097/01.AOG.0000220544.21316.80.
  9. de Vries JI, Fong BF. Changes in fetal motility as a result of congenital disorders: an overview. Ultrasound Obstet Gynecol 2007;29(5):590–599. DOI: 10.1002/uog.3917.
  10. de Vries JI, Fong BF. Normal fetal motility: an overview. Ultrasound Obstet Gynecol 2006;27(6):701–711. DOI: 10.1002/uog.2740.
  11. Kurjak A, Abo-Yaqoub S, Stanojevic M, et al. The potential of 4D sonography in the assessment of fetal neurobehavior—multicentric study in high-risk pregnancies. J Perinat Med 2010;38(1):77–82. DOI: 10.1515/jpm.2010.012.
  12. DiPietro JA, Bornstein MH, Costigan KA, et al. What does fetal movement predict about behavior during the first two years of life? Dev Phych 2002;40(4):358–371. DOI: 10.1002/dev.10025.
  13. Rosier-van Dunné FM, van Wezel-Meijler G, Bakker MP, et al. General movements in the perinatal period and its relation to echogenicity changes in the brain. Early Hum Dev 2010;86(2):83–86. DOI: 10.1016/j.earlhumdev.2010.01.023.
  14. Hata T, Kanenishi K, Akiyama M, et al. Realtime 3-D sonographic observation of fetal facial expression. J Obstet Gynaecol Res 2005;31(4):337–340. DOI: 10.1111/j.1447-0756.2005.00298.x.
  15. Kozuma S, Baba K, Okai T, et al. Dynamic observation of the fetal face by three-dimensional ultrasound. Ultrasound Obstet Gynecol 1999;13(4):283–284.
  16. Kurjak A, Azumendi G, Andonotopo W, et al. Three- and four-dimensional ultrasonography for the structural and functional evaluation of the fetal face. Am J Obstet Gynecol 2007;196(1):16–28. DOI: 10.1016/j.ajog.2006.06.090.
  17. Kurjak A, Tikvica A, Stanojevic M, et al. The assessment of fetal neurobehavior by three-dimensional and four-dimensional ultrasound. J Matern Fetal Neonatal Med 2008;21(10):675–684. DOI: 10.1080/14767050802212166.
  18. Kurjak A, Pooh R, Tikvica A, et al. Assessment of neurobehavior by 3D/4D ultrasound. In: Fetal Neurology. Pooh RK, Kurjak A, ch. 7 1st ed., 2009. pp. 222–285.
  19. Kurjak A, Stanojevic M, Andonotopo W, et al. Behavioral pattern continuity from prenatal to postnatal life—a study by four-dimensional (4D) ultrasonography. J Perinat Med 2004;32(4):346–353. DOI: 10.1515/JPM.2004.065.
  20. Andonotopo W, Kurjak A, Kosuta MI. Behavior of an anencephalic fetus studied by 4D sonography. J Matern Fetal Neonatal Med 2005 Feb;17(2):165–168. DOI: 10.1080/jmf.17.2.165.168.
  21. Nijhuis JG, Prechtl HF, Martin CB, et al. Are there behavioral states in the human fetus? Early Hum Dev 1982;6(2):177–195. DOI: 10.1016/0378-3782(82)90106-2.
  22. Lebit DF, Vladareanu PD. The role of 4D ultrasound in the assessment of fetal behaviour. Maedica (Buchar) 2011;6(2):120–127.
  23. Salihagic-Kadic A, Kurjak A, Medic M, et al. New data about embryonic and fetal neurodevelopment and behaviour obtained by 3D and 4D sonography. J Perinat Med 2005;33(6):478–490. DOI: 10.1515/JPM.2005.086.
  24. Kurjak A, Azumendi G, Vecek N, et al. Fetal hand movements and facial expression in normal pregnancy studied by four-dimensional sonography. J Perinat Med 2003;31(6):496–508. DOI: 10.1515/JPM.2003.076.
  25. Andonotopo W, Stanojevic M, Kurjak A, et al. Assessment of fetal behavior and general movements by four-dimensional sonography. Ultrasound Rev Obstet Gynecol 2004;4(2):103–114. DOI: 10.3109/14722240400016895.
  26. Kurjak A, Stanojevic M, Azumendi G, et al. The potential of four-dimensional (4D) ultrasonography in the assessment of fetal awareness. J Perinat Med 2005;33(1):4653. DOI: 10.1515/JPM.2005.008.
  27. Kurjak A, Pooh RK, Carrera JM, et al. Structural and functional early human development assessed by three-dimensional (3D) and four dimensional (4D) sonography. Fertil Steril 2005;84(5):1285–1299. DOI: 10.1016/j.fertnstert.2005.03.084.
  28. Kurjak A, Miskovic B, Andonotopo W, et al. How useful is 3D and 4D ultrasound in perinatal medicine. J Perinat Med 2007;35(1):10–27. DOI: 10.1515/JPM.2007.002.
  29. Andonotopo W, Medic M, Salihagic-Kadic A, et al. The assessment of embryonic and fetal neurodevelopment in early pregnancy: comparison between 2D and 4D sonographic scanning. J Perinat Med 2005;33(5):406–414. DOI: 10.1515/JPM.2005.073.
  30. Kurjak A, Stanojevic M, Andonotopo W, et al. Fetal behavior assessed in all three trimesters of normal pregnancy by four-dimensional ultrasonography. Croat Med J 2005;46(5):772–780.
  31. Pooh RK, Ogura T. Normal and abnormal fetal hand positioning and movement in early pregnancy detected by three- and four-dimensional ultrasound. Ultrasound Rev Obset Gynecol 2004;4:46–51.
  32. Andonopo W, Kurjak A. The assessment of fetal behavior of growth restricted fetuses by 4D sonography. J Perinat Med 2006;34:471–478.
  33. Kurjak A, Andonotopo W, Hafner T, et al. Normal standards for fetal neurobehavioural developments-longitudinal quantification by four-dimensional sonography. J Perinat Med 2006;34(1):56–65. DOI: 10.1515/JPM.2006.007.
  34. Walusinski O, Kurjak A, Andonotopo W, et al. Fetal yawning assessed by 3D and 4D sonography. Ultrasound Rev Obstet Gynecol 2005;5(3):210–217. DOI: 10.3109/14722240500284070.
  35. Hanaoka U, Hata T, Kanenishi K, et al. Does ethnicity have an effect on fetal behavior? a comparison of Asian and Caucasian populations. J Perinat Med 2016;44(2):217–221. DOI: 10.1515/jpm-2015-0036.
  36. Farkas LG, Katic MJ, Forrest CR. International anthropometric study of facial morphology in various ethnic groups/races. J Craniofac Surg 2005;16(4):615–646. DOI: 10.1097/01.scs.0000171847.58031.9e.
  37. Le TT, Farkas LG, Ngim RCK, et al. Proportionality in Asian and North American Caucasian faces using neoclassical facial canons as criteria. Aesth Plast Surg 2002;26:64–69.
  38. Hata T, Hanaoka U, Mostafa AboEllail MA, et al. Is there a sex difference in fetal behavior? A comparison of the KANET test between male and female fetuses. J Perinat Med 2016;44(5):585–588. DOI: 10.1515/jpm-2015-0387.
  39. Korner AF. Neonatal startles, smiles, erections, and reflex sucks as related to state, sex, and individuality. Child Dev 1969;40(4):1039–1053. DOI: 10.2307/1127010.
  40. Jacklin CN, Snow ME, Maccoby EE. Tactile sensitivity and muscle strength in newborn boys and girls. Infant Behav Dev 1981;4:261–268. DOI: 10.1016/S0163-6383(81)80028-8.
  41. de Vries JIP, Visser GHA, Prechtl HFR. The emergence of fetal behaviour. III. Individual differences and consistencies. Early Hum Dev 1988;16(1):85–103. DOI: 10.1016/0378-3782(88)90089-8.
  42. Hepper PG, Shannon EA, Dornan JC. Sex differences in fetal mouth movements. Lancet 1997;350(9094):1820. DOI: 10.1016/S0140-6736(05)63635-5.
  43. Robles de Medina PG, Visser GHA, Huizink AC, et al. Fetal behaviour does not differ between boys and girls. Early Hum Dev 2003;73(1-2):17–26. DOI: 10.1016/s0378-3782(03)00047-1.
  44. DiPietro JA, Hodgson DM, Costigan KA, et al. Fetal neurobehavioral development. Child Dev 1996;67(5):2553–2567. DOI: 10.2307/1131640.
  45. Pressman EK, DiPietro JA, Costigan KA, et al. Fetal neurobehavioral development: associations with socioeconomic class and fetal sex. Dev Psychobiol 1998;33(1):79–91. DOI: 10.1002/(SICI)1098-2302(199807)33:1<79::AID-DEV7>3.0.CO;2-P.
  46. Hepper PG, Dornan JC, Lynch C. Sex differences in fetal habituation. Dev Sci 2012;15(3):373–383. DOI: 10.1111/j.1467-7687.2011.01132.x.
  47. Tranquilli AL, Lorenzi S, Buscicchio G, et al. Female fetuses are more reactive when mother eats chocolate. J Matern Fetal Neonatal Med 2014;27(1):72–74. DOI: 10.3109/14767058.2013.804053.
  48. Antsaklis P, Porovic S, Daskalakis G, et al. 4D assessment of fetal brain function in diabetic patients. J Perinat Med 2017;45(6):711–715. DOI: 10.1515/jpm-2016-0394.
  49. Edelberg SC, Dierker L, Kalhan S, et al. Decreased fetal movements with sustained maternal hyperglycemia using the glucose clamp technique. Am J Obstet Gynecol 1987;156(5):1101–1105. DOI: 10.1016/0002-9378(87)90118-9.
  50. Cosmi EV, Anceschi MM, Cosmi E, et al. Ultrasonographic patterns of fetal breathing movements in normal pregnancy. Int J Gynaecol Obstet 2003;80(3):285–290. DOI: 10.1016/s0020-7292(02)00384-3.
  51. Allen CL, Kisilevsky BS. Fetal behavior in diabetic and nondiabetic pregnant women: an exploratory study. Dev Psychobiol 1999;35(1):69–80. DOI: 10.1002/(SICI)1098-2302(199907)35:1<69::AID-DEV9>3.0.CO;2-W.
  52. Mulder EJ, O'Brien MJ, Lems YL, et al. Body and breathing movements in near-term fetuses and newborn infants of type-1 diabetic women. Early Hum Dev 1990;24(2):131–152. DOI: 10.1016/0378-3782(90)90143-7.
  53. Devoe LD, Youssef AA, Castillo RA, et al. Fetal biophysical activities in third-trimester pregnancies complicated by diabetes mellitus. Am J Obstet Gynecol 1994;171(2):298–303. DOI: 10.1016/s0002-9378(94)70026-5.
  54. Kainer F, Prechtl HF, Engele H, et al. Assessment of the quality of general movements in fetuses and infants of women with type-I diabetes mellitus. Early Hum Dev 1997;50(1):13–25. DOI: 10.1016/s0378-3782(97)00089-3.
  55. Holden KP, Jovanovic L, Druzin ML, et al. Increased fetal activity with low maternal blood glucose levels in pregnancies complicated by diabetes. Am J Perinatol 1984;1(2):161–164. DOI: 10.1055/s-2007-999994.
  56. Yeoshoua E, Goldstein I, Zlozover M, et al. Sonographic study of the relationship between gestational diabetes mellitus and fetal activity. J Matern Fetal Neonatal Med 2012;25(6):623–626. DOI: 10.3109/14767058.2011.597897.
  57. Dieb A, Salam R, Shaheen D, et al. Evaluation of foetal neurological behaviour in hypothyroid pregnant females - a pilot study. J Matern Fetal Neonatal Med 2019;32(16):2617–2621. DOI: 10.1080/14767058.2018.1442428.
  58. Bernal J. Thyroid hormones and brain development. Vitam Horm 2005;71:95–122. DOI: 10.1016/S0083-6729(05)71004-9.
  59. Kooistra L, Crawford S, van Baar AL, et al. Neonatal effects of maternal hypothyroxinemia during early pregnancy. Pediatrics 2006;117(1):161–167. DOI: 10.1542/peds.2005-0227.
  60. Henrichs J, Bongers-Schokking JJ, Schenk JJ, et al. Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: the generation R study. J Clin Endocrinol Metab 2010;95(9):4227–4234. DOI: 10.1210/jc.2010-0415.
  61. Li Y, Shan Z, Teng W, et al. Abnormalities of maternal thyroid function during pregnancy affect neuropsychological development of their children at 25–30 months. Clin Endocrinol (Oxf) 2010;72(6):825–829. DOI: 10.1111/j.1365-2265.2009.03743.x.
  62. Gyamfi C, Wapner RJ, D'Alton ME. Thyroid dysfunction in pregnancy: the basic science and clinical evidence surrounding the controversy in management. Obstet Gynecol 2009;113(3):702–707. DOI: 10.1097/AOG.0b013e3181996fe5.
  63. Chevrier J, Harley KG, Kogut K, et al. Maternal thyroid function during the second half of pregnancy and child neurodevelopment at 6, 12, 24, and 60 months of age. J Thyroid Res 2011;2011:426427. DOI: 10.4061/2011/426427.
  64. Pop VJ, Brouwers EP, Vader HL, et al. Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3-year follow-up study. Clin Endocrinol (Oxf) 2003;59(3):282–288. DOI: 10.1046/j.1365-2265.2003.01822.x.
  65. Nazarpour S, Ramezani Tehrani F, Simbar M, et al. Thyroid dysfunction and pregnancy outcomes. Iran J Reprod Med 2015;13(7):387–396.
  66. Hata T, Kanenishi K, AboEllail MAM, et al. Effect of psychotropic drugs on fetal behavior in the third trimester of pregnancy. J Perinat Med 2019;47(2):207–211. DOI: 10.1515/jpm-2018-0114.
  67. Sanz EJ, De-las-Cuevas C, Kiuru A, et al. Selective serotonin reuptake inhibitors in pregnant women and neonatal withdrawal syndrome: a database analysis. Lancet 2005;365(9458):482–487. DOI: 10.1016/S0140-6736(05)17865-9.
  68. Brandlistuen RE, Ystrom E, Eberhard-Gran M, et al. Behavioural effects of fetal antidepressant exposure in a Norwegian cohort of discordant siblings. Int J Epidemiol 2015;44(4):1397–1407. DOI: 10.1093/ije/dyv030.
  69. Boukhris T, Sheehy O, Mottron L, et al. Antidepressant use during pregnancy and the risk of autism spectrum disorder in children. JAMA Pediatr 2016;170(2):117–124. DOI: 10.1001/jamapediatrics.2015. 3356.
  70. Mezzacappa A, Lasica PA, Gianfagna F, et al. Risk for autism spectrum disorders according to period of prenatal antedepressant exposure. JAMA Pediatr 2017;171(6):555–563. DOI: 10.1001/jamapediatrics.2017.0124.
  71. Rihtman T, Parush S, Ornoy A. Developmental outcomes at preschool age after fetal exposure to valproic acid and lamotrigine: cognitive, motor, sensory and behavioral function. Reprod Toxicol 2013;41:115–125. DOI: 10.1016/j.reprotox.2013.06.001.
  72. Deshmukh U, Adams J, Macklin EA, et al. Behavioral outcomes in children exposed prenatally to lamotrigine, valproate, or carbamazepine. Neurotoxicol Teratol 2016;54:5–14. DOI: 10.1016/j.ntt.2016.01.001.
  73. Ogo K, Kanenishi K, Mori N, et al. Change in fetal behavior in response to vibroacoustic stimulation. J Perinat Med 2019;47(5):558–563. DOI: 10.1515/jpm-2018-0344.
  74. Spencer JAD, Deans A, Nicolaidis P, et al. Fetal heart rate response to vibroacoustic stimulation during low and high heart rate variability episodes in late pregnancy. Am J Obstet Gynecol 1991;165(1):86–90. DOI: 10.1016/0002-9378(91)90230-o.
  75. D'Elia A, Pighetti M, Vanacore F, et al. Vibroacoustic stimulation in normal term human pregnancy. Early Hum Dev 2005;81(5):449–453. DOI: 10.1016/j.earlhumdev.2004.04.017.
  76. Umstad M, Bailey C, Permezel M. Intrapartum fetal stimulation testing. Aust N Z J Obstet Gynaecol 1992;32(3):222–224. DOI: 10.1111/j.1479-828X.1992.tb01951.x.
  77. East CE, Smyth R, Leader LR, et al. Vibroacoustic stimulation for fetal assessment in labour in the presence of a nonreassuring fetal heart rate trace. Cochrane Database Syst Rev 2005(2):CD004664. DOI: 10.1002/14651858.CD004664.pub2.
  78. Arulkumaran S, Talbert D, Hsu TS, et al. In-utero sound levels when vibroacoustic stimulation is applied to the maternal abdomen: an assessment of the possibility of cochlea damage in the fetus. Br J Obstet Gynaecol 1992;99(1):43–45. DOI: 10.1111/j.1471-0528.1992.tb14390.x.
  79. Arulkumaran S, Skurr B, Tong H, et al. No evidence of hearing loss due to fetal acoustic stimulation test. Obstet Gynecol 1991;78(2):283–285.
  80. Mulder EJ, Koenen SV, Blom I, et al. The effects of antenatal betamethasone administration on fetal heart rate and behaviour depend on gestational age. Early Hum Dev 2004;76(1):65–67. DOI: 10.1016/j.earlhumdev.2003.10.007.
  81. Mushkat Y, Ascher-Landsberg J, Keidar R, et al. The effect of betamethasone versus dexamethasone on fetal biophysical parameters. Eur J Obstet Gynecol Reprod Biol 2001;97(1):50–52. DOI: 10.1016/s0301-2115(00)00498-x.
  82. Kelly MK, Schneider EP, Petrikovsky BM, et al. Effect of antenatal steroid administration on the fetal biophysical profile. J Clin Ultrasound 2000;28(5):224–226. DOI: 10.1002/(sici)1097-0096(200006)28:53.0.co;2-g.
  83. Rotmensch S, Liberati M, Vishne TH, et al. The effect of betamethasone and dexamethasone on fetal heart rate patterns and biophysical activities. A prospective randomized trial. Acta Obstet Gynecol Scand 1999;78(6):493–500. DOI: 10.1080/j.1600-0412.1999.780604.x.
  84. Derks JB, Mulder EJ, Visser GH. The effects of maternal betamethasone administration on the fetus. Br J Obstet Gynaecol 1995;;102(1):40–46. DOI: 10.1111/j.1471-0528.1995.tb09024.x.
  85. Mulder EJ, Derks JB, Visser GH. Antenatal corticosteroid therapy and fetal behaviour: a randomised study of the effects of betamethasone and dexamethasone. Br J Obstet Gynaecol 1997;104(11):1239–1247. DOI: 10.1111/j.1471-0528.1997.tb10969.x.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.