Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 15 , ISSUE 2 ( April-June, 2021 ) > List of Articles

REVIEW ARTICLE

Fetal Awareness

Milan Stanojevic, Aida Salihagic Kadic

Citation Information : Stanojevic M, Kadic AS. Fetal Awareness. Donald School J Ultrasound Obstet Gynecol 2021; 15 (2):188-194.

DOI: 10.5005/jp-journals-10009-1700

License: CC BY-NC 4.0

Published Online: 02-07-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Background: While studying fetal behavior using four-dimensional ultrasound (4D US), we have been speculating about the fetal awareness and fetal cognitive function, trying to become familiarized with fetal emotional life and its readiness to separate from the intrauterine environment and begin independent life as a new individual. Aim and objective: The aim and objective to see whether by observing the fetus by 4D US we are able to enter fetal behavior, emotions, mental status, consciousness, awareness, and other states connected with fetal mind and ability of self-regulation. Results: After 24–26 weeks, the fetus has the necessary connections to sense pain. Somatosensory evoked potentials can be registered from the cortex at 29 weeks, and they may provide evidence of pain processing in the somatosensory cortex. According to recent findings, the cortical pain response has been recorded by near-infrared spectroscopy from about 25 weeks. Fetal facial expressions like those of children sustaining pain have been noticed by 4D US. The fetus can alter the frequency, patterning, and coordination of movement in response to sensory challenges, while retention of information from motor experience and motor learning may contribute to normal prenatal motor development. Conclusion: We have learned from the research by 4D US that the fetus is capable of action planning and learning, meaning that probably the capability of being aware and conscious should proceed. Fetal life in utero is dramatic and rich in different experiences, which probably would not be possible without development of fetal awareness and consciousness.


HTML PDF Share
  1. Newman PG, Rozycki GS. The history of ultrasound. Surg Clin North Am 1998;78:179–195 McNay MB, Fleming EE. Forty years of obstetric ultrasound 1957-1997: from A-scope to three dimensions. Ultrasound Med Biol 1999;25(1):3–56. DOI: 10.1016/s0301-5629(98)00129-x.
  2. Kurjak A, Stanojević M, Salihagić-Kadić A, et al. Is four-dimensional ultrasound (4D US) entering a new field of fetal psychiatry? Psychiatria Danubina 2019;31(2):133–140. DOI: 10.24869/psyd.2019.133.
  3. McNay MB, Fleming EE. Forty years of obstetric ultrasound 1957-1997: from A-scope to three dimensions. Ultrasound Med Biol 1999;25(1):3–56. DOI: 10.1016/s0301-5629(98)00129-x.
  4. Baba K, Satoh K, Sakamoto S, et al. Development of an ultrasonic system for three-dimensional reconstruction of the fetus. J Perinat Med 1989;17(1):19–24. DOI: 10.1515/jpme.1989.17.1.19.
  5. Merz E. Einsatz der 3D-Ultraschalltechnik in der pränatalen Diagnostik. Ultraschall in Med 1995;16(4):154–161. DOI: 10.1055/s-2007-1003931.
  6. Kurjak A, Hafner T, Kos M, et al. Three-dimensional sonography in prenatal diagnosis: a luxury or necessity. J Perinat Med 2000;28(3):194–209. DOI: 10.1515/JPM.2000.027.
  7. Prechtl HFR. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum Dev 1990;23(3):151–158. DOI: 10.1016/0378-3782(90)90011-7.
  8. Einspieler C, Prechtl HFR, Bos AF, et al. Prechtl's method on the qualitative assessment of general movements in preterm, term and young infants. Cambridge: Mac Keith Press; 2004.
  9. Hadders-Algra M. General movements: a window for early identification of children at high risk for developmental disorders. J Pediatr 2004;145(2 Suppl):S12–S18. DOI: 10.1016/j.jpeds.2004.05.017.
  10. Kurjak A, Azumendi G, Veček N, et al. Fetal hand and facial expression in normal pregnancy studied by four-dimensional sonography. J Perinat Med 2003;31(6):496–508. DOI: 10.1515/JPM.2003.076.
  11. Kurjak A, Stanojevic M, Andonotopo W, et al. Behavioral pattern continuity from prenatal to postnatal life – a study by four-dimensional (4D) ultrasonography. J Perinat Med 2004;32(4):346–353. DOI: 10.1515/JPM.2004.065.
  12. Kurjak A, Miskovic B, Stanojevic M, et al. New scoring system for fetal neurobehavior assessed by three- and four-dimensional sonography. J Perinat Med 2008;36(1):73–81. DOI: 10.1515/JPM.2008.007.
  13. Kurjak A, Abo-Yaqoub S, Stanojevic M, et al. The potential of 4D sonography in the assessment of fetal neurobehavior – multicentric study in high-risk pregnancies. J Perinat Med 2010;38(1):77–82. DOI: 10.1515/jpm.2010.012.
  14. Amiel Tison C, Gosselin J, Kurjak A. Neurosonography in the second half of fetal life: a neonatologist point of view. J Perinat Med 2006;34(6):437–446. DOI: 10.1515/JPM.2006.088.
  15. Kurjak A, Stanojevic M, Azumendi G, et al. The potential of four-dimensional ultrasonography in the assessment of fetal awareness. J Perinat Med 2005;33(1):46–53. DOI: 10.1515/JPM.2005.008.
  16. Salihagic Kadic A, Kurjak A. Cognitive functions of the fetus. Ultraschall in Med 2018;39(02):181–189. DOI: 10.1055/s-0043-123469.
  17. Ingerslev HJ, Kesmodel US, Jacobsson B, et al. Personalized medicine for the embryo and the fetus - Options in modern genetics influence preconception and prenatal choices. Acta Obstet Gynecol Scand 2020;99(6):689–691. DOI: 10.1111/aogs.13882.
  18. Sekulic SR, Lukac DD, Naumovic NM. The fetus cannot exercise like an astronaut: gravity loading is necessary for the physiological development during second half of pregnancy. Med Hypotheses 2005;64(2):221–228. DOI: 10.1016/j.mehy.2004.08.012.
  19. Meigal AY. Synergistic action of gravity and temperature on the motor system within the lifespan: a “Baby Astronaut” hypothesis. Med Hypotheses 2013;80(3):275–283. DOI: 10.1016/j.mehy.2012.12.004.
  20. Merriam-Webster Dictionary. Awareness. https://www.merriam-webster.com/dictionary/awareness (Accessed 21.12.2020.
  21. MacMillan Dictionary. Awareness. https://www.macmillandictionary.com/dictionary/british/awareness (Accessed 21.12.2020).
  22. Wikipedia. Awareness. https://en.wikipedia.org/wiki/Awareness (Accessed 21.12.2020.).
  23. Hussain A, Aleksander I, Smith L, et al., ed. Brain Inspired Cognitive Systems. 2008. New York: Springer Science Business Media; 2010. pp. 221–256. DOI: 10.1007/978-0-387-79100-5.
  24. Boly M, Phillips C, Tshibanda L, et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 2008;1129(1):119–129. DOI: 10.1196/annals.1417.015.
  25. Hata T, Kanenishi K, AboEllail MAM, et al. Fetal consciousness: four-dimensional ultrasound study. Donald School J Ultrasound Obstet Gynecol 2015;9(4):471–474. DOI: 10.5005/jp-journals-10009-1434.
  26. Amadei G, Bianchi I. Living systems, evolving consciousness, and the emerging person: a selection of papers from the life work of Louis Sander. New York: Taylor & Francis; 2012. pp. 157–166.
  27. Droit-Volet S, Dambrun M. Awareness of the passage of time and self-consciousness: what do meditators report? Psych J 2019;8(1):51–65. DOI: 10.1002/pchj.270.
  28. Salihagić Kadić A, Predojević M. Fetal neurophysiology according to gestational age. Semin Fetal Neonatal Med 2012;17(5):256–260. DOI: 10.1016/j.siny.2012.05.007.
  29. Budday S, Steinmann P, Kuhl E. Physical biology of human brain development. Front Cell Neurosci 2015;9:257. DOI: 10.3389/fncel.2015.00257.
  30. Anderson AL, Thomason ME. Functional plasticity before the cradle: a review of neural functional imaging in the human fetus. Neurosci Biobehav Rev 2013;37(9 Pt B):2220–2232. DOI: 10.1016/j.neubiorev.2013.03.013.
  31. Faghiri A, Stephen JM, Wang YP, et al. Brain development includes linear and multiple nonlinear trajectories: a cross-sectional resting-state functional magnetic resonance imaging study. Brain Connect 2019;9(10):777–788. DOI: 10.1089/brain.2018.0641.
  32. Jena A, Montoya CA, Mullaney JA, et al. Gut-brain axis in the early postnatal years of life: a developmental perspective. Front Integr Neurosci 2020;14:44. DOI: 10.3389/fnint.2020.00044.
  33. Kostović I, Judas M, Petanjek Z, et al. Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psychophysiol 1995;19(2):85–102. DOI: 10.1016/0167-8760(94)00081-o.
  34. Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology 2010;35(1):147–168. DOI: 10.1038/npp.2009.115.
  35. Kostović I, Judas M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 2010;99(8):1119–1127. DOI: 10.1111/j.1651-2227.2010.01811.x.
  36. Thomason ME. Development of brain networks in utero: relevance for common neural disorders. Biol Psychiatry 2020;88(1):40–50. DOI: 10.1016/j.biopsych.2020.02.007.
  37. Klimach VJ, Cooke RW. Maturation of the neonatal somatosensory evoked response in preterm infants. Dev Med Child Neurol 1988;30(2):208–214. DOI: 10.1111/j.1469-8749.1988.tb04752.x.
  38. Nevalainen P, Lauronen L, Pihko E. Development of human somatosensory cortical functions - what have we learned from magnetoencephalography: a review. Front Hum Neurosci 2014;8:158. DOI: 10.3389/fnhum.2014.00158.
  39. Laureys S, Goldman S, Phillips C, et al. Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. Neuroimage 1999;9(4):377–382. DOI: 10.1006/nimg.1998.0414.
  40. Wintermark P, Hansen A, Warfield SK, et al. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neuroimage 2014;85 Pt 1(0 1):287–293. DOI: 10.1016/j.neuroimage.2013.04.072.
  41. Counsell SJ, Arichi T, Arulkumaran S, et al. Fetal and neonatal neuroimaging. Handb Clin Neurol 2019;162:67–103. DOI: 10.1016/B978-0-444-64029-1.00004-7.
  42. Heiss WD. PET in coma and in vegetative state. Eur J Neurol 2012;19(2):207–211. DOI: 10.1111/j.1468-1331.2011.03489.x.
  43. Arichi T, Whitehead K, Barone G, et al. Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI. Elife 2017. 6. pii: e27814 10.7554/eLife.27814.
  44. Andersen JB, Lindberg U, Olesen OV, et al. Hybrid PET/MRI imaging in healthy unsedated newborn infants with quantitative rCBF measurements using 15O-water PET. J Cereb Blood Flow Metab 2019;39(5):782–793. DOI: 10.1177/0271678X17751835.
  45. Giovannella M, Contini D, Pagliazzi M, et al. BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature newborn brain. Neurophotonics 2019;6(2):025007. DOI: 10.1117/1.NPh.6.2.025007.
  46. O'Sullivan M, Temko A, Bocchino A, et al. Analysis of a low-cost EEG monitoring system and dry electrodes toward clinical use in the neonatal ICU. Sensors (Basel) 2019;19(11):pii: E2637 10.3390/s19112637.
  47. Salek-Haddadi A, Friston KJ, Lemieux L, et al. Studying spontaneous EEG activity with fMRI. Brain Res Brain Res Rev 2003;43(1):110–133. DOI: 10.1016/s0165-0173(03)00193-0.
  48. Lagercrantz H. The emergence of consciousness: science and ethics. Semin Fetal Neonatal Med 2014;19(5):300–305. DOI: 10.1016/j.siny.2014.08.003.
  49. Di Mascio D, Sileo FG, Khalil A, et al. Role of magnetic resonance imaging in fetuses with mild or moderate ventriculomegaly in the era of fetal neurosonography: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2019;54(2):164–171. DOI: 10.1002/uog.20197.
  50. Hart AR, Embleton ND, Bradburn M, et al. Accuracy of in-utero MRI to detect fetal brain abnormalities and prognosticate developmental outcome: postnatal follow-up of the MERIDIAN cohort. Lancet Child Adolesc Health 2020;4(2):131–140. DOI: 10.1016/S2352-4642(19)30349-9.
  51. Clark-Gambelunghe MB, Clark DA. Sensory development. Pediatr Clin North Am 2015;62(2):367–384. DOI: 10.1016/j.pcl.2014.11.003.
  52. Bellieni CV. New insights into fetal pain. Semin Fetal Neonatal Med 2019;24(4):101001. DOI: 10.1016/j.siny.2019.04.001.
  53. Podzimek Š, Dušková M, Broukal Z, et al. The evolution of taste and perinatal programming of taste preferences. Physiol Res 2018;67(Suppl 3):S421–S429. DOI: 10.33549/physiolres.934026.
  54. Donovan T, Dunn K, Penman A, et al. Fetal eye movements in response to a visual stimulus. Brain Behav 2020;10(8):e01676. DOI: 10.1002/brb3.1676.
  55. Lagercrantz H. The emergence of the mind - a borderline of human viability? Acta Pediatrica 2007;96(3):327–328. DOI: 10.1111/j.1651-2227.2007.00232.x.
  56. Kurjak A, Azumendi G, Andonotopo W, et al. Three- and four-dimensional ultrasonography for the structural and functional evaluation of the fetal face. Am J Obstet Gynecol 2007;196(1):16–28. DOI: 10.1016/j.ajog.2006.06.090.
  57. Reissland N, Francis B, Mason J. Can healthy fetuses show facial expressions of “pain” or “distress”? PLoS One 2013;8(6):e65530. DOI: 10.1371/journal.pone.0065530.
  58. Pierucci R. Fetal pain: the science behind why it is the medical standard of care. Linacre Q 2020;87(3):311–316. DOI: 10.1177/0024363920924877.
  59. Bellieni CV, Vannuccini S, Petraglia F. Is fetal analgesia necessary during prenatal surgery? J Matern Fetal Neonatal Med 2018;31(9):1241–1245. DOI: 10.1080/14767058.2017.1311860.
  60. Bernardes LS, Ottolia JF, Cecchini M, et al. Grupo de estudo da dor fetal (fetal pain study group). On the feasibility of accessing acute pain-related facial expressions in the human fetus and its potential implications: a case report. Pain Rep. 2018;3(5):e673. DOI: 10.1097/PR9.0000000000000673.
  61. Kurjak A, Andonotopo W, Hafner T, et al. Normal standards for fetal neurobehavioral developments—longitudinal quantification by four-dimensional sonography. J Perinat Med 2006;34(1):56–65. DOI: 10.1515/JPM.2006.007.
  62. Andonotopo W, Medic M, Salihagic-Kadic A, et al. The assessment of fetal behavior in early pregnancy: comparison between 2D and 4D sonographic scanning. J Perinat Med 2005;33(5):406–414. DOI: 10.1515/JPM.2005.073.
  63. Robinson SR. Spinal mediation of motor learning and memory in the rat fetus. Dev Psychobiol 2015;57(4):421–434. DOI: 10.1002/dev.21277.
  64. Kurjak A, Stanojević M, Predojević M, et al. Neurobehavior in fetal life. Semin Fetal Neonatal Med 2012;17(6):319–323. DOI: 10.1016/j.siny.2012.06.005.
  65. Salihagić Kadić A, Stanojević M, Predojević M, et al. Assessment of the fetal neuromotor development with the new KANET test. In: Reissland N, Kisilevsky BS, ed. Fetal Development Research on Brain and Behavior, Environmental Influences, and Emerging Technologies. Heidelberg, New York, Dordrecht, London: Springer International Publishing Switzerland; 2016. pp. 177–189.
  66. Kurjak A, Antsaklis P, Stanojevic M, et al. Multicentric studies of the fetal neurobehavior by KANET test. J Perinat Med 2017;45(6):717–727. DOI: 10.1515/jpm-2016-0409.
  67. Kurjak A, Antsaklis P, Stanojevic M, et al. Fetal behavior assessed by four-dimensional ultrasound. Donald School J Ultrasound Obstet Gynecol 2017;11(2):169–173. DOI: 10.5005/jp-journals-10009-1516.
  68. Moreira R, Kurjak A, Porovic S, et al. Clinical study of fetal neurobehavior by the Kurjak Antenatal developmental test. Donald School J Ultrasound Obstet Gynecol 2017;11(4):355–361. DOI: 10.5005/jp-journals-10009-1543.
  69. Kurjak A, Stanojević M, Spalldi Barišić L, et al. A critical appraisal of Kurjak Antenatal neurodevelopmental test: five years of wide clinical use. Donald School J Ultrasound Obstet Gynecol 2020;14(4):304–310. DOI: 10.5005/jp-journals-10009-1669.
  70. Stanojevic M, Perlman M, Andonotopo W, et al. From fetal to neonatal behavioral status. Ultrasound Rev Obstet Gynecol 2004;4(1):459–471. DOI: 10.3109/14722240410001713939.
  71. Stanojevic M, Kurjak A. Continuity between fetal and neonatal neurobehavior. Donald School J Ultrasound Obstet Gynecol 2008;2(3):64–75. DOI: 10.5005/jp-journals-10009-1066.
  72. Stanojevic M, Kurjak A, Salihagić-Kadić A, et al. Neurobehavioral continuity from fetus to neonate. J Perinat Med 2011;39(2):171–177. DOI: 10.1515/jpm.2011.004.
  73. Stanojevic M. Neonatal aspects: is there continuity?. Donald School Jultrasound Obstet Gynecol 2012;6(2):189–196. DOI: 10.5005/jp-journals-10009-1242.
  74. Stanojevic M, Zaputovic S, Pavicic Bosnjak A. Continuity between fetal and neonatal neurobehavior. Semin Fetal Neonat Med 2012;17(6):324–329. DOI: 10.1016/j.siny.2012.06.006.
  75. Stanojevic M. Antenatal and postanatal assessment of neurobehavior: which one should be used? Donald School J Obstet Gynecol 2015;9(1):67–74. DOI: 10.5005/jp-journals-10009-1391.
  76. AboEllail MAM, Hata T. Fetal face as important indicator of fetal brain function. J Perinat Med 2017;45(6):729–736. DOI: 10.1515/jpm-2016-0377.
  77. Nitta E, Kanenishi K, Mori N, et al. Twin fetal facial expressions at 30-33+6 weeks of gestation. J Perinat Med 2019;47(9):963–968. DOI: 10.1515/jpm-2019-0127.
  78. Mori N, AboEllail MAM, Tenkumo C, et al. Fetal facial expressions in small-for-gestational-age and growth-restricted fetuses. J Matern Fetal Neonatal Med 2019;32(9):1426–1432. DOI: 10.1080/14767058.2017.1410788.
  79. de Jong-Pleij EA, Ribbert LS, Pistorius LR, et al. Three-dimensional ultrasound and maternal bonding, a third trimester study and a review. Prenat Diagn 2013;33(1):81–88. DOI: 10.1002/pd.4013.
  80. Borg Cunen N, Jomeen J, Borg Xuereb R, et al. A narrative review of interventions addressing the parental-fetal relationship. Women Birth 2017;30(4):e141–e151. DOI: 10.1016/j.wombi.2016.11.005.
  81. van Manen MA. Towards the womb of neonatal intensive care. J Med Humanit 2019;40(2):225–237. DOI: 10.1007/s10912-017-9494-9.
  82. Rolls ET. The cingulate cortex and limbic systems for action, emotion, and memory. Handb Clin Neurol 2019;166:23–37. DOI: 10.1016/B978-0-444-64196-0.00002-9.
  83. Borsani E, Della Vedova AM, Rezzani R, et al. Correlation between human nervous system development and acquisition of fetal skills: an overview. Brain Dev 2019;41(3):225–233. DOI: 10.1016/j.braindev.2018.10.009.
  84. Dirix CE, Nijhuis JG, Jongsma HW, et al. Aspects of fetal learning and memory. Child Dev 2009;80(4):1251–1258. DOI: 10.1111/j.1467-8624.2009.01329.x.
  85. Hepper PG, Dornan JC, Lynch C. Sex differences in fetal habituation. Dev Sci 2012;15(3):373–383. DOI: 10.1111/j.1467-7687.2011.01132.x.
  86. Kossowsky J, Wilhelm FH, Roth WT, et al. Separation anxiety disorder in children: disorder-specific responses to experimental separation from the mother. J Child Psychol Psychiatry 2012;53(2):178–187. DOI: 10.1111/j.1469-7610.2011.02465.x.
  87. Bergman NJ. Birth practices: maternal-neonate separation as a source of toxic stress. Birth Defects Res 2019;111(15):1087–1109. DOI: 10.1002/bdr2.1530.
  88. Kurjak A. Controversies on the beginning of human life - science and religions closer and closer. Psychiatr Danub 2017;29(Suppl 1): 89–91.
  89. Kurjak A, Carrera JM, McCullough LB, et al. Scientific and religious controversies about the beginning of human life: the relevance of the ethical concept of the fetus as a patient. J Perinat Med 2007;35(5):376–383. DOI: 10.1515/JPM.2007.088.
  90. Watt H, McCarthy A. Targeting the fetal body and/or mother-child connection: vital conflicts and abortion. Linacre Q 2020;87(2):147–160. DOI: 10.1177/0024363919887613.
  91. Peterfy A. Fetal viability as a threshold to personhood. A legal analysis. J Leg Med 1995;16(4):607–636. DOI: 10.1080/01947649509510995.
  92. Marx V, Nagy E. Fetal behavioral responses to the touch of the mother's abdomen: a frame-by-frame analysis. Infant Behav Dev 2017;47:83–91. DOI: 10.1016/j.infbeh.2017.03.005.
  93. Miranda-Morales RS, D'Aloisio G, Anunziata F, et al. Fetal alcohol programming of subsequent alcohol affinity: a review based on preclinical, clinical and epidemiological studies. Front Behav Neurosci 2020;14:33. DOI: 10.3389/fnbeh.2020.00033.
  94. Amiel-Tison C, Gosselin J. From neonatal to fetal neurology: some clues for interpreting fetal findings. In: Pooh RK, Kurjak A, ed. Fetal neurology. New Delhi: Jaypee Brothers Medical Publishers; 2009. pp. 373–404.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.