Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 13 , ISSUE 1 ( January-March, 2019 ) > List of Articles


Fetal Cognitive Functions and 3D/4D Ultrasound

Oliver Vasilj, Aida Saligahiæ Kadiæ, Anja Šurina

Keywords : Fetal behavior, Fetal cognitive function, Fetal stress, Four-dimensional ultrasonography

Citation Information : Vasilj O, Kadiæ AS, Šurina A. Fetal Cognitive Functions and 3D/4D Ultrasound. Donald School J Ultrasound Obstet Gynecol 2019; 13 (1):41-53.

DOI: 10.5005/jp-journals-10009-1584

License: CC BY-NC 4.0

Published Online: 01-04-2019

Copyright Statement:  Copyright © 2019; The Author(s).


In the past decades, advances in modern imaging methods, especially three-dimensional/four-dimensional ultrasound (3D/4D US), functional magnetic resonance imaging (fMRI) and fetal magnetoencephalography (fMEG), enabled the studies of the important neurodevelopmental events and opened the field of the investigation of fetal cognitive functions. Prenatal structural, functional and behavioral development, including the development of the central nervous system (CNS) and cognitive functional developments, are nowadays accessible to a better assessment due to the implementation of these methods. 3D/4D ultrasound imaging provides much important information about the fetus. It can detect various malformations and clarify suspicious findings, improve diagnostic accuracy, display fascinating fetal activity and also, it supports the advancements in fetal neurobehavioral and cognitive science. In this paper, a brief review of 3D/4D US assessed insights in the field of fetal neurodevelopment, particularly the development of fetal cognitive functions: sensory perception, motor action, emotions, learning, and memory, as well as the role of the fetal stress in cognitive development are discussed. Investigation of fetal cognitive functions is still in its beginning, but it is certain that future advances in the application of new imaging methods, such as different 3D/4D US modes and fMRI, will enable a better understanding of the cognitive abilities and functions of the fetus.

  1. Kadiæ AS, Kurjak A. Cognitive Functions of the Fetus. Ultraschall Med 2018; 39(2):181-189.
  2. Kadiæ AS, Glavac F, Vasilj O. Advances in Understanding of Neurophysiological Function of the Fetus. Donald Sch J Ultrasound Obstet Gynecol 2018;2(1):23-31.
  3. Merz E. 25 years of 3D ultrasound in prenatal diagnosis. Ultraschall Med 2015;36:3-8.
  4. Schopf V, Langs G, Jakab A. Functional imaging of prenatal brain. In: Reissland N, Kisilevsky B.(eds.): Fetal development: Research on brain and behavior, environmental influences, and emerging technologies. New York: Springer Intrenational Publishing, 2016:429-439.
  5. Kadiæ AS, Predojeviæ M. Fetal neurophysiology according to gestational age. Seminars in Fetal and Neonatal Medicine 2012;17(5):256-260.
  6. Huttenlocher P. Synaptogenesis in human cerebral cortex. In: Dawson G, Fisher K.(eds.): Human behavior and the developing brain. New York: Guilford, 1994:137-152.
  7. Stiles J, Brown T, Haist F, et al. Brain and Cognitive Development. In: Lerner M. (ed.): Handbook of Child Psychology and Developmental Science. 7th ed. New York : John Wiley & Sons, Inc., 2015:1-54.
  8. Sadler T. Central Nervous System. In: Sadler T. (ed.): Langman's Medical Embryology. 9th ed. Philadelphia: Lippincot and Wilkins, 2004:433-480.
  9. Saitsu H, Yamada S, Uwabe C, et al. Development of the posterior neural tube in human embryos. Anat Embryol (Berl) 2004;209(2):107-117.
  10. Nelson CA. Neural development and lifelong plasticity. In: Keating P. (ed.):Nature and Nurture in Early Child Development. Cambridge: Cambridge University Press, 2011: 45-69.
  11. Kostoviæ I, Šimiæ G. Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psychophysiol 1995;19(2):85-102.
  12. Kostovic I, Judas M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 2010;99(8):1119-1127.
  13. Kostovic I. Laminar Organization of the Human Fetal Cerebrum Revealed by Histochemical Markers and Magnetic Resonance Imaging. Cereb Cortex 2002;12(5):536-544.
  14. Kadiæ AS, Predojeviæ M, Kurjak A. Advances in fetal neurophyisology. In: Pooh RK, Kurjak A. (eds.): Fetal neurology. New Delhi: Jaypee Brothers; 2009:160-204.
  15. Olson CR, Colby CL. Organization of Cognition. In: Kandel ER, Schwartz JH, Jessell TM. Siegelbaum SA, Hudspeth AJ. (eds.): Principles of Neural Science. New York: McGraw-Hill, 2013:392-411.
  16. Lagercrantz H. The emergence of consciousness: Science and ethics. Semin Fetal Neonatal Med 2014;19(5):300-305.
  17. Qiu A, Mori S, Miller MI. Diffusion tensor imaging for understanding brain development in early life. Annu Rev Psychol 2015;66:853-876.
  18. Anderson A, Thomason ME. Functional platicity before the cradle: a review of neural imaging in the human fetus. Neurosci Biobehav Rev 2013;37:2220-2232.
  19. Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U. Resting-state networks in the infant brain. Proc Natl Acad Sci 2007;104:15531-15336.
  20. Doria V, Beckman CF, Arichi T, et al. Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci 2010;107:20015-20020.
  21. Thomason M, Chang CE, GloverGH, Gabrieli JDE, Grecius MD, Gotlib IH. Default-mode function and task-induced deactivation have overlapping brain substrates in children. NeuroImage 2008;41:1493-1503.
  22. Jakab A, Schwartz E, Kasprian G, Gruber GH, Prayer D, Schöpf V, Langs G. Fetal functional imaging portrays heterogeneous development of emerging human brain networks. Front Hum Neurosci 2014;8:852.
  23. Pashaj S, Merz E. Detection of Fetal Corpus Callosum Abnormalities by Means of 3D Ultrasound. Ultraschall Med 2016;37(2):185-194.
  24. Paul L. Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement. J Neurodev Disord 2011;3:3-27.
  25. Okado N, Kakimi S, Kojima T. Synaptogenesis in the cervical cord of the human embryo: Sequence of synapse formation in a spinal reflex pathway. J Comp Neurol 1979;184(3):491-517.
  26. Okado N, Kojima T. Ontogeny of the central nervous system: neurogenesis, fibre connection, synaptogenesis and myelination in the spinal cord. In: Prechtl H. (ed.): Continuity of neural function from prenatal to postnatal life. Oxford: Blackwell Science, 1984:31-35.
  27. Okado N. Onset of synapse formation in the human spinal cord. J Comp Neurol 1981;201(2):211-219.
  28. de Vries JIP, Visser GHA, Prechtl HFR. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum Dev 1982;7(4):301-322.
  29. Einspieler C, Prechtl HF. Prechtl's assessment of general movements: a diagnostic tool for the functional assessment of the young nervous system. Ment Retard Dev Disabil Res Rev 2005;11(1):61-67.
  30. Joseph R. Fetal Brain Behavior and Cognitive Development. Dev Rev 2000;20(1):81–98.
  31. Pomeroy S, Volpe J. Development of the nervous system. In: Polin R, Fox W. (eds.): Fetal and neonatal physiology. Phyladelphia-London-Toronto-Montreal-Sydney-Tokyo: WB Saunders Copmany, 1992: 1491-1509.
  32. Lüchinger AB, Hadders-Algra M, Van Kan CM, et al. Fetal onset of general movements. Pediatr Res 2008; 63(2):191-195.
  33. Kurjak A, Azumendi G, Veèek N, et al. Fetal hand movements and facial expression in normal pregnancy studied by fourdimensional sonography. J Perinat Med 2003;31(6):496-508.
  34. Pooh RK, Ogura T. Normal and abnormal fetal hand positioning and movement in early pregnancy detected by three- and four-dimensional sonography. J Perinat Med 2003;31:496-508.
  35. Andonotopo W, Mediæ M, Kadiæ AS, at al. The assessment of fetal behaviour in early pregnancy : comparison between 2D and 4D sonographic scanning. J Perinat Med 2005;33(5):406-414.
  36. Prechtl HFR. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum Dev 1990;23(3):151-158.
  37. Einspieler C, Prechtl HFR, Ferrari F, et al. The qualitative assessment of general movements in preterm, term and young infants - Review of the methodology. Early Hum Dev 1997; 50(1):47-60.
  38. Kurjak A, Azumendi G, Andonotopo W, et al. Three- and four-dimensional ultrasonography for the structural and functional evaluation of the fetal face. Am J Obstet Gynecol 2007; 196(1):16-28.
  39. Delafield-butt J, Trevarthen C. Theories of the development of human communication. Theories and Models of Communication. In: Cobley P, Schutz PJ. (eds.):Handbook of Communicaton Science. Berlin: De Gruyeter Moutun, 2013:199-221.
  40. Zoia S, Blason L, D'Ottavio G, et al. Evidence of early development of action planning in the human foetus: A kinematic study. Exp Brain Res 2007;176(2)217-226.
  41. Trevarthen C, Delafield-butt J. Autism as a developmental disorder in intentional movement and affective engagement. Front Integr Neurosci 2013;7:49-73.
  42. Anand KJS, Carr DB. The Neuroanatomy, Neurophysiology, and Neurochemistry of Pain, Stress, and Analgesia in Newborns and Children. Pediatr Clin North Am 1989;36(4):795-822.
  43. Kostovic I, Rakic P. Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J Neurosci 1984;4(1):25-42.
  44. Kostovic I, Goldman-Rakic P. Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 1983;219:431-447.
  45. Amiel-Tison C, Gosselin J. From neonatal to fetal neurology: some clues for interpreting fetal findings. In: Pooh R, Kurjak A. (eds.): Fetal neurology. New Delhi: Jaypee Brothers, 2009:373-399.
  46. Klimach VJ, Cooke RWI. Maturation of the neonatal somatosensory evoked reponse in preterm infants. Dev Med Child Neurol 1988;30(2):208-214.
  47. Groome LJ, Swiber MJ, Atterbury JL, et al. Similarities and Differences in Behavioral State Organization during Sleep Periods in the Perinatal Infant before and after Birth. Child Dev 1997;68(1):1-11.
  48. Kawai N. Towards a New Study on Associative Learning in Human Fetuses: Fetal Associative Learning in Primates. Infant Child Dev 2010;19:55-59.
  49. Kisilevsky B, Hains S, Lee K, et al. Effects of experience on fetal voice recognition. Psych Sci 2003;14:220-224.
  50. Kisilevsky B, Hains S. Exploring the Relationship between Fetal Heart Rate and Cognition. Infant Child Dev. 2010;19: 60-75.
  51. Reissland N, Francis B, Mason J. Can Healthy Fetuses Show Facial Expressions of “Pain” or “Distress”? PLoS One. 2013;8(6): e65530.
  52. Kurjak A, Miskovic B, Stanojevic M, et al. New scoring system for fetal neurobehavior assessed by three- and fourdimensional sonography. J Perinat Med 2008; 36(1):73-81.
  53. Kadiæ AS, Stanojeviæ M, Predojeviæ M. Assessment of the Fetal Neuromotor Development with the New KANET Test. In: Reissland N, Ksilevsky B. (eds.): Fetal Development: Research on Brain and Behavior, Environmental Influences, and Emerging Technologies. Heidelberg, New York, Dordrecht, London: Springer Intrenational Publishing Switzerland, 2016:177-189.
  54. Kurjak A, Abo-Yaqoub S, Stanojevic M, et al. The potential of 4D sonography in the assessment offetal neurobehavior— multicentric study in high-riskpregnancies. J Perinat Med 2010;38(1):77-82.
  55. Predojeviæ M, Taliæ A, Stanojeviæ M, et al. Assessment of motoric and hemodynamic parameters in growth restricted fetuses – case study. J Matern Neonatal Med 2014;27(3):247-251.
  56. Tomasovic S, Predojevic M. Neurodevelopment disorders and possibility of their prenatal detection. Acta Med Croat 2015;69(5):415-420.
  57. Hall J, Guyton A. Textbook of Medical Physiology. 13th edition. Philadelphia: Elsavier, 2016: 577-688.
  58. Lagercrantz H. The emergence of the mind - A borderline of human viability? Acta Paediatrica, International Journal of Paediatrics 2007;327-328.
  59. Vanhatalo S, Van Nieuwenhuizen O. Fetal pain? Brain and Development 2000; 22(3):145-150.
  60. Arabin B, Bos R, Rijlaarsdam R, et al. The onset of inter-human contacts: longitudinal ultrasound observations in early twin pregnancies. Ultrasound Obstet Gynecol 1996;8(3):166-173.
  61. Piontelli A, Bocconi L, Kustermann A, et al. Patterns of evoked behaviour in twin pregnancies during the first 22 weeks of gestation. Early Hum Dev 1997;50(1):39-45.
  62. Hepper P. Prenatal development. In: Slater A, Lewis M. (eds): Introduction to infant development. New York: Oxford University Press, 2007:39-101.
  63. Gupta A, Giordano J. On the Nature, Assessment, and Treatment of Fetal Pain: Neurobiological Bases, Pragmatic Issues, and Ethical Concerns. Pain Physician 2007;10(4):525-532.
  64. Teixeira JMA, Glover V, Fisk NM. Acute cerebral redistribution in response to invasive procedures in the human fetus. Am J Obstet Gynecol 1999; 181(4):1018-1025.
  65. Smith RP, Gitau R, Glover V, et al. Pain and stress in the human fetus. Eur J Obstet Gynecol Reprod Biol 2000;92(1):161-165.
  66. Giannakoulopoulos X, Glover V, Sepulveda W, et al. Fetal plasma cortisol and ƒÀ-endorphin response to intrauterine needling. The Lancet 1994;344(8915):77-81.
  67. Giannakoulopoulos X, Teixeira J, Fisk N, et al. Human fetal and maternal noradrenaline responses to invasive procedures. Pediatr Res 1999;45(4 Pt 1):494-499.
  68. White MC, Wolf AR. Pain and stress in the human fetus. Best Pr Res Clin Anaesthesiol 2004;18(2):205-220.
  69. Kadi. AS. Fetal neurology: The role of fetal stress. Donald Sch J Ultrasound Obstet Gynecol 2015; 9:30-39.
  70. Magoon EH, Robb RM. Development of myelin in human optic nerve and tract. A light and electron microscopic study. Arch Ophtalmol 1981;99:655-659.
  71. Huttenlocher P, de Courten C. The development of synapses in striate cortex of man. Hum Neurobiol 1987;6(1):1-9.
  72. Sheridan CJ, Preissl H, Siegel ER, et al. Neonatal and fetal response decrement of evoked responses: A MEG study. Clin Neurophysiol 2008;119(4):796-804.
  73. Eswaran H, Wilson J, Preissl H, et al. Magnetoencephalographic recordings of visual evoked brain activity in the human fetus. The Lancet 2002; 360(9335):779-780.
  74. Kablar B. Determination of retinal cell fates is affected in the absence of extraocular striated muscles. Dev Dyn 2003;226(3):478-490.
  75. Baguma-Nibasheka M, Reddy T, Abbas-Butt A, et al. Fetal ocular movements and retinal cell differentiation: Analysis employing DNA microarrays. Histol Histopathol 2006;21: 1331-1337.
  76. Sale A, Cenni MC, Clussi F, et al. Maternal enrichment during pregnancy accelerates retinal development of the fetus. PLoS One 2007;2(11):e1160.
  77. Sale A, Putignano E, Cancedda L, et al. Enriched environment and acceleration of visual system development. Neuropharmacology 2004;47(5):649-660.
  78. Landi S, Sale A, Berardi N, et al. Retinal functional development is sensitive to environmental enrichment: a role for BDNF. FASEB J 2006;21(1):130-139.
  79. Hepper PG, Shahidullah B. The development of fetal hearing. Fetal Matern Med Rev 1994;6(3):167-179.
  80. Lecanuet JP, Schaal B. Fetal sensory competencies. Eur J Obstet Gynecol Reprod Biol 1996;68(1.2):1-23.
  81. Kisilevsky BS, Hains SMJ, Jacquet AY, et al. Maturation of fetal responses to music. Dev Sci 2004;7(5):550-559.
  82. Cowperthwaite B, Hains SMJ, Kisilevsky BS. Fetal behavior in smoking compared to non-smoking pregnant women. Infant Behav Dev 2007;30(3):422-430.
  83. Kisilevsky BS, Davies GAL. Auditory processing deficits in growth restricted fetuses affect later language development. Med Hypotheses 2007;68(3):620-628.
  84. Lee CT, Brown CA, Hains SMJ, et al. Fetal development: Voice processing in normotensive and hypertensive pregnancies. Biol Res Nurs 2007;8(4):272-282.
  85. Marshall J. Infant Neurosensory Development: Considerations for Infant Child Care. Early Childhood Education Journal 2011; 39(3):175-181.
  86. Granier-Deferre C, Bassereau S, Ribeiro A, et al. A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS One 2011;6(2):e17304.
  87. Yamaguchi S. Rapid Prefrontal-Hippocampal Habituation to Novel Events. J Neurosci 2004;24(23):5356-5363.
  88. Wright CI, Fischer H, Whalen PJ, et al. Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport 2001;12(2):379-383.
  89. Jeffrey WE, Cohen LB. Habituation in the Human Infant. Adv Child Dev Behav 1971;6:63-97.
  90. Thompson RF, Spencer WA. Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 1966; 73(1):16-43.
  91. Van Heteren CF, Boekkooi PF, Jongsma HW, et al. Fetal learning and memory. The Lancet 2000;356(9236):1169-1170.
  92. Shalev E, Weiner E, Serr DM. Fetal habituation to sound stimulus in various behavioral states. Gynecol Obstet Invest 1990;29(2):115-117.
  93. Gagnon R, Hunse C, Carmichael L, et al. Human fetal responses to vibrator acoustic stimulation from twentysix weeks to term. Am J Obstet Gynecol 1987;157(6):1375-1381.
  94. Morokuma S, Fukushima K, Kawai N, et al. Fetal habituation correlates with functional brain development. Behav Brain Res 2004;153(2):459-463.
  95. Hepper P. Fetal memory: Does it exist? What does it do? Acta Paediatr 1996;416:16-20.
  96. Kawai N, Morokuma S, Tomonaga M, et al. Associative learning and memory in a chimpanzee fetus: Learning and long-lasting memory before birth. Dev Psychobiol 2004;44(2):116-122.
  97. Hepper PG, Scott D, Shahidullah S. Newborn and fetal response to maternal voice. J Reprod Infant Psychol 1993;11(3):147-153.
  98. Jardri R, Houfflin-Debarge V, Delion P, et al. Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. Int J Dev Neurosci 2012;30(2):159-161.
  99. Hepper P. Fetal “soap” Addiction. The Lancet 1988; 331 (8598):1347-1348.
  100. Mennella JA, Jagnow CP, Beauchamp GK. Prenatal and Postnatal Flavor Learning by Human Infants. Pediatrics 2001;107(6):e88-e88.
  101. DeCasper AJ, Spence MJ. Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behav Dev 1986;9(2):133-150.
  102. Dirix CEH, Nijhuis JG, Jongsma HW, et al. Aspects of fetal learning and memory. Child Dev 2009; 80(4):1251-1258.
  103. Webb A, Heller H, Benon C. Mother's voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc Natl Acad Sci 2015;112(10):3152-3157.
  104. Merz E. Fetal Facial Expressions: Demonstrations of the Smiling, the Sad and the Scowling Fetus with 4D-Ultrasound. Ultraschall Med 2015;36(1):1-2.
  105. Kurjak A, Andonotopo W, Hafner T, et al. Normal standards for fetal neurobehavioral developments - Longitudinal quantification by four-dimensional sonography. J Perinat Med 2006;34(1):56-65.
  106. Hata T, Dai S-Y MG. Ultrasound for Evaluation of Fetal Neurobehavioural Development: from 2-D to 4-D Ultrasound. Infant Child Dev 2010;19:99-118.
  107. Reissland N, Francis B, Mason J, et al. Do Facial Expressions Develop before Birth? PLoS One 2011;6(8):e24081.
  108. Hata T, Kanenishi K, AboEllail MAM. Fetal Consciousness: Four-dimensional Ultrasound Study. Donald Sch J Ultrasound Obstet Gynecol 2015;9(4):471-474.
  109. Joseph R. Environmental influences on neural plasticity, the limbic system, emotional development and attachment: A review. Child Psychiatry Hum Dev 1999; 29(3):189-208.
  110. Humphrey T. The development of the human amygdala during early embryonic life. J Comp Neurol 1968;132(1):135-165.
  111. Buss C, Davis EP, Shahbaba B, et al. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc Natl Acad Sci 2012; 109(20):E1312-E1319.
  112. Gitau R, Fisk NM, Teixeira JMA, et al. Fetal hypothalamicpituitary- adrenal stress responses to invasive procedures are independent of maternal responses. J Clin Endocrinol Metab 2001;86(1):104-109.
  113. Buitelaar JK, Huizink AC, Mulder EJ, et al. Prenatal stress and cognitive development and temperament in infants. Neurobiology of Aging 2003; 24:S53-S60.
  114. Davis EP, Glynn LM, Schetter CD, et al. Prenatal exposure to maternal depression and cortisol influences infant temperament. J Am Acad Child Adolesc Psychiatry 2007;46(6):737-746.
  115. Bergman K, Sarkar P, Glover V, et al. Maternal Prenatal Cortisol and Infant Cognitive Development: Moderation by Infant-Mother Attachment. Biol Psychiatry 2010;67(11):1026-1032.
  116. Gutteling BM, de Weerth C, Zandbelt N, et al. Does Maternal Prenatal Stress Adversely Affect the Child's Learning and Memory at Age Six? J Abnorm Child Psychol 2006; 34:789-798.
  117. Barker DJ. Fetal origins of coronary heart disease. BMJ 1995;311(6998):171-174.
  118. Reynolds RM. Glucocorticoid excess and the developmental origins of disease: Two decades of testing the hypothesis - 2012 Curt Richter Award Winner. Psychoneuroendocrinology 2013; 38(1):1-11.
  119. Cottrell EC, Seckl JR. Prenatal stress, glucocorticoids and the programming of the adult disease. Front Behav Neurosci 2009;3(19):1-9.
  120. Cottrell EC, Seckl JR, Holmes MC, et al. Foetal and placental 11beta-HSD2: A hub for developmental programming. Acta Physiologica 2014; 210(2):288-295.
  121. Aiken CE, Ozanne SE. Sex differences in developmental programming models. Reproduction 2013;145(1):R1-13.
  122. Kurjak A, Barisic LS, Stanojevic M, et al. Are we ready to investigate cognitive function of fetal brain? The role of advanced four-dimensional sonography. Donald Sch J Ultrasound Obstet Gynecol 2016;10(2):116-124.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.