Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 18 , ISSUE 3 ( July-September, 2024 ) > List of Articles

REVIEW ARTICLE

Fetal and Maternal Physiology and Ultrasound Diagnosis

Aida Saligahiæ Kadiæ, Maja Predojevic

Keywords : Development and functions of the placenta, Fetal and maternal physiology, Ultrasound

Citation Information : Kadiæ AS, Predojevic M. Fetal and Maternal Physiology and Ultrasound Diagnosis. Donald School J Ultrasound Obstet Gynecol 2024; 18 (3):234-260.

DOI: 10.5005/jp-journals-10009-2034

License: CC BY-NC 4.0

Published Online: 30-09-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Maternal, fetal, and placental factors are involved in the growth, development, and metabolism of the fetus. This paper presents the development of the placenta and its functions, fetal growth and metabolism, the structural and functional development of the fetal organ systems, and fetal stress and its prenatal and postnatal consequences.


PDF Share
  1. Stables D. Physiology in childbearing with anatomy and related biosciences. Edinburgh: Bailliere Tindall; 1999. pp. 73–148.
  2. Wong KHH, Adashi EY. Early conceptus growth and immunobiologic adaptations of pregnancy. In: Reece EA, Hobbins JC, Gant NF (Eds). Clinical obstetrics: the fetus and mother. Oxford: Blackwell Publishing Ltd; 2007. pp. 3–19.
  3. Huppertz B, Kingdom JCP. The placenta and fetal membranes. In: Edmonds KD (Ed). Dewhurst's Textbook of Obstetrics and Gynaecology. Oxford: Blackwell Publishing Ltd; 2007. pp. 19–28.
  4. http://www.centrus.com.br/DiplomaFMF/SeriesFMF/doppler/capitulos-html/chapter_03.htm
  5. Kahn BF, Hobbins JC, Galan HL. Intrauterine growth restriction. In: Gibbs RS, Karlan BY, Haney AF, Nygaard (Eds). Danforth's Obstetrics and Gynecology. Philadelphia: Lippincott Williams and Wilkins; 2008. pp. 198–220.
  6. Baschat AA. Fetal growth restriction—from observation to intervention. J Perinat Med 2010;38(3):239–246. DOI: 10.1515/jpm.2010.041
  7. Harrington K, Goldfrad C, Carpenter RG, et al. Transvaginal uterine and umbilical artery Doppler examination of 12–16 weeks and the subsequent development of pre-eclampsia and intrauterine growth retardation. Ultrasound Obstet Gynecol 1997;9(2):94–100. DOI: 10.1046/j.1469-0705.1997.09020094.x
  8. Rizzo G, Arduini D, Romanini C. Umbilical vein pulsations: a physiologic finding in early gestation. Am J Obstet Gynecol 1992;167(3):675–677. DOI: 10.1016/s0002-9378(11)91569-5
  9. Giles WB, Trudinger BJ, Baird PJ. Fetal umbilical artery flow velocity waveforms and placental resistance: pathological correlation. Br J Obstet Gynaecol 1985;92(1):31–38. DOI: 10.1111/j.1471-0528.1985.tb01045.x
  10. Karsdorp VH, Dirks BK, van der Linden JC, et al. Placenta morphology and absent or reversed end diastolic flow velocities in the umbilical artery: a clinical and morphometrical study. Placenta 1996;17(7):393–399. DOI: 10.1016/s0143-4004(96)90020-x
  11. Baschat AA. Fetal responses to placental insufficiency: an update. BJOG 2004;111(10):1031–1041. DOI: 10.1111/j.1471-0528.2004.00273.x
  12. Arbeille P, Maulik D, Fignon A, et al. Assessment of the fetal PO2 changes by cerebral and umbilical Doppler on lamb fetuses during acute hypoxia. Ultrasound Med Biol 1995;21(7):861–870. DOI: 10.1016/0301-5629(95)00025-m
  13. Arbeille P, Roncin A, Berson M, et al. Exploration of the fetal cerebral blood flow by duplex Doppler—linear array system in normal and pathological pregnancies. Ultrasound Med Biol 1987;13(6):329–337. DOI: 10.1016/0301-5629(87)90166-9
  14. Gramellini D, Folli MC, Raboni S, et al. Cerebral-umbilical Doppler ratio as a predictor of adverse perinatal outcome. Obstet Gynecol 1992;79(3):416–420. DOI: 10.1097/00006250-199203000-00018
  15. Arbeille P, Maulik D, Salihagic A, et al. Effect of long-term cocaine administration to pregnant ewes on fetal hemodynamics, oxygenation, and growth. Obstet Gynecol 1997;90(5):795–802. DOI: 10.1016/S0029-7844(97)00361-X
  16. Fignon A, Salihagic A, Akoka S, et al. Twenty-day cerebral and umbilical Doppler monitoring on a growth retarded and hypoxic fetus. Eur J Obstet Gynecol Reprod Biol 1996;66(1):83–86. DOI: 10.1016/0301-2115(96)02379-2
  17. Laurini RN, Arbeille B, Gemberg C, et al. Brain damage and hypoxia in an ovine fetal chronic cocaine model. Eur J Obstet Gynecol Reprod Biol 1999;86(1):15–22. DOI: 10.1016/s0301-2115(99)00036-6
  18. Salihagic A, Georgescus M, Perrotin F, et al. Daily Doppler assessment of the fetal hemodynamic response to chronic hypoxia: a five case report. Prenat Neonat Med 2000;5:35–41.
  19. Guyton i Hall. Medicinska fiziologija. 11. Izdanje. Zagreb: Medicinska naklada; 2006. pp. 1042–52, 1027–41, 918–30.
  20. Marieb EN. Human Anatomy and Physiology, 5th edition. San Francisco: Benjamin Cummings; 2000. pp. 1118–1148.
  21. Johnson MH, Everitt BI. Essential Reproduction, 5th edition. Oxford: Blackwell Science; 2000. pp. 203–222.
  22. Ross MG, Ervin MG, Novak D. Fetal physiology. In: Gabbe SG, Niebyl JR, Simpson JL, editors. Obstetrics: normal and problem pregnancies. Philadelphia: Churchill Livingstone Elsevier; 2007. pp. 26–54.
  23. Handwerger S, Freemark M. The role of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab 2000;13(4):343–356. DOI: 10.1515/jpem.2000.13.4.343
  24. Lovinger RD, Kaplan SL, Grumbach MM. Congenital hypopituitarism associated with neonatal hypoglycemia and microphallus: four cases secondary to hypothalamic hormone deficiencies. J Pediatr 1975;87(6 Pt 2):1171–1181. DOI: 10.1016/s0022-3476(75)80132-6
  25. Goodman HG, Grumbach MM, Kaplan SL. Growth and growth hormone. II. A comparison of isolated growth-hormone deficiency and multiple pituitary-hormone deficiencies in 35 patients with idiopathic hypopituitary dwarfism. N Engl J Med 1968;278(2):57–68. DOI: 10.1056/NEJM196801112780201
  26. Lemons JA, Ridenour R, Orsini EN. Congenital absence of the pancreas and intrauterine growth retardation. Pediatrics 1979;64(2):255–257. PMID: 471619.
  27. Lassare C, Hardouin S, Daffos F, et al. Serum insulin-like growth factors and insulin-like growth factors binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr Res 1991;29(3):219–225. DOI: 10.1203/00006450-199103000-00001
  28. Ashton IK, Zapf J, Einschenk I, et al. Insulin-like growth factors (IGF) 1 and 2 in human foetal plasma and relationship to gestational age and foetal size during midpregnancy. Acta Endocrinol (Copenh) 1985;110(4):558–563. DOI: 10.1530/acta.0.1100558
  29. Basset NS, Oliver MH, Breier BH, et al. The effect of maternal starvation on plasma insulin-like growth factor I concentrations in the late gestation ovine fetus. Pediatr Res 1990;27(4 Pt 1):401–404. DOI: 10.1203/00006450-199004000-00015
  30. Oliver MH, Harding JE, Breier BH, et al. Glucose but not a mixed amino acid infusion regulates plasma insulin-like growth factor-I concentration in fetal sheep. Pediatr Res 1993;34(1):62–65. DOI: 10.1203/00006450-199307000-00015
  31. Prada JA, Tsang RC. Biological mechanisms of environmentally induced causes of IUGR. Eur J Clin Nutr 1998;52(Suppl 1):S21–S27;discussion S27-8. PMID: 9511016.
  32. Mirlesse V, Frankenne F, Alsat E, et al. Placental growth hormone levels in normal pregnancy and in pregnancies with intrauterine growth retardation. Pediatr Res 1993;34(4):439–442. DOI: 10.1203/00006450-199310000-00011
  33. Gluckman PD, Grumbach MM, Kaplan SL. The human fetal hypothalamus and pituitary gland. In: Tulchinsky D, Ryan KJ, editors. Maternal-fetal endocrinology. Philadelphia: WB Saunders Company; 1980. p. 196.
  34. Czeizel AE. Folic acid in the prevention of neural tube defects. J Pediatr Gastroenterol Nutr 1995;20(1):4–16. DOI: 10.1097/00005176-199501000-00003
  35. Canfield MA, Collins JS, Botto LD, et al. Changes in the birth prevalence of selected birth defects after grain fortification with folic acid in the United States: findings from a multi-state population-based study. Birth Defects Res A Clin Mol Teratol 2005;73(10):679–689. DOI: 10.1002/bdra.20210
  36. Bower C, Miller M, Payne J, et al. Folate intake and the primary prevention of non-neural birth defects. Aust N Z J Public Health 2006;30(3):258–261. DOI: 10.1111/j.1467-842x.2006.tb00867.x
  37. Czeizel AE, Puhó E. Maternal use of nutritional supplements during the first month of pregnancy and decreased risk of Down's syndrome: case-control study. Nutrition 2005;21(6):698–704. DOI: 10.1016/j.nut.2004.10.017
  38. Judge MP, Harel O, Lammi-Keefe CJ. A docosahexaenoic acid-functional food during pregnancy benefits infant visual acuity at four but not six months of age. Lipids 2007;42(2):117–122. DOI: 10.1007/s11745-006-3007-3
  39. Judge MP, Harel O, Lammi-Keefe CJ. Maternal consumption of a docosahexaenoic acid-containing functional food during pregnancy: benefit for infant performance on problem-solving but not on recognition memory tasks at age 9 mo. Am J Clin Nutr 2007;85(6):1572–1577. DOI: 10.1093/ajcn/85.6.1572
  40. Helland IB, Smith L, Saarem K, et al. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age. Pediatrics 2003;111(1):e39–e44. DOI: 10.1542/peds.111.1.e39
  41. Hibbeln JR, Davis JM, Steer C, et al. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 2007;369(9561):578–585. DOI: 10.1016/S0140-6736(07)60277-3
  42. Romieu I, Torrent M, Garcia-Esteban R, et al. Maternal fish intake during pregnancy and atopy and asthma in infancy. Clin Exp Allergy 2007;37(4):518–525. DOI: 10.1111/j.1365-2222.2007.02685.x
  43. Willers SM, Devereux G, Craig LCA, et al. Maternal food consumption during pregnancy and asthma, respiratory and atopic symptoms in 5-year-old children. Thorax 2007;62(9):773–779. DOI: 10.1136/thx.2006.074187
  44. Kaiser L, Allen LH, American Dietetic Association. Position of the American Dietetic Association: nutrition and lifestyle for a healthy pregnancy outcome. J Am Diet Assoc 2008;108(3):553–561. DOI: 10.1016/j.jada.2008.01.030
  45. Tucker Blackburn S, Lee Loper D. Maternal, fetal, and neonatal physiology: a clinical perspective. Philadelphia: WB Saunders Company; 1992. pp. 228–247.
  46. Sadler TW. Langmanova Medicinska embriologija. Zagreb: Školska knjiga; 1996. pp. 183–231, 232–241, 272–311, 374–415.
  47. Azhar M, Ware SM. Genetic and developmental basis of cardiovascular malformations. Clin Perinatol 2016;43(1):39–53. DOI: 10.1016/j.clp.2015.11.002
  48. Sutton MJ, Gill T, Plappert P. Functional anatomic development in the fetal heart. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. Philadelphia: WB Saunders Company; 1992. pp. 598–607.
  49. Schats R, Jansen CA, Wladimiroff JW. Embryonic heart activity: appearance and development in early human pregnancy. Br J Obstet Gynaecol 1990;97(11):989–994. DOI: 10.1111/j.1471-0528.1990.tb02469.x
  50. Merchiers EH, Dhont M, De Sutter PA, et al. Predictive value of early embryonic cardiac activity for pregnancy outcome. Am J Obstet Gynecol 1991;165(1):11–14. DOI: 10.1016/0002-9378(91)90214-c
  51. Berne RM, Levy MN. Fiziologija. 3. izd. Zagreb: Medicinska naklada; 1996. pp. 489–491, 831–863, 879–907, 908–948.
  52. Bancroft J. Researches in prenatal life. Oxford: Blackwell; 1946.
  53. Bartelds B, van Bel F, Teitel DF, et al. Carotid, not aortic, chemoreceptors mediate the fetal cardiovascular response to acute hypoxemia in lambs. Pediatr Res 1993;34(1):51–55. DOI: 10.1203/00006450-199307000-00013
  54. Jones CT, Robinson RO. Plasma catecholamines in foetal and adult sheep. J Physiol 1975;248(1):15–33. DOI: 10.1113/jphysiol.1975.sp010960
  55. Guissani DA, McGrrigle HH, Spencer JA, et al. Effect of carotid denervation on plasma vasopressin levels during acute hypoxia in late gestation sheep fetus. J Physiol 1994;477(Pt 1):81–87. DOI: 10.1113/jphysiol.1994.sp020173
  56. Green LR, McGarrigle HHG, Bennet L, et al. The effect of acute hypoxaemia on plasma angiotensin II in intact and carotid sinus-denervated fetal sheep. J Physiol 1994;470(P):81.
  57. Richardson B, Korkola S, Assano H, et al. Regional blood flow and the endocrine response to sustained hypoxaemia in the preterm ovine fetus. Pediatr Res 1996;40(2):337–343. DOI: 10.1203/00006450-199608000-00024
  58. Myers DA, Robertshaw D, Nathanielsz PW. Effect of bilateral splanchnic nerve section on adrenal function in the ovine fetus. Endocrinology 1990;127(5):2328–2335. DOI: 10.1210/endo-127-5-2328
  59. Green LR, McGrrigle HHG, Bennet L, et al. Effect of carotid sinus denervation on plasma endothelin-1 during acute isocapnic hypoxaemia in the late gestation ovine fetus (sažetak). J Soc Gynaecol Inv 1995;2(2):159.
  60. Green LR, Bennet L, Hanson MA. The role of nitric oxide synthesis in cardiovascular response to acute hypoxia in the late gestation sheep fetus. J Physiol 1996;497(Pt 1):271–277. DOI: 10.1113/jphysiol.1996.sp021766
  61. Heymann MA. Fetal cerebrovascular physiology. In: Creasy RK, Resnik R, editors. Maternal-fetal medicine: principles and practice. 2nd ed. Philadelphia: WB Saunders Company; 1989. pp. 288–300.
  62. Trivedi VN, Hay P, Hay JC. Normal embryonic and fetal development. In: Reece EA, Hobbins JC, Gant NF, editors. Clinical obstetrics: the fetus and mother. Oxford: Blackwell Publishing Ltd; 2007. pp. 19–35.
  63. Grand RJ, Watkins JB, Torti FM. Development of the human gastrointestinal tract. A review. Gastroenterology 1976;70(5 Pt 1):790–810. PMID: 770227.
  64. Cunningham FG, MacDonald PC, Gant NF, et al. Williams Obstetrics. 20th ed. Stamford: Appleton and Lange; 1997.
  65. Diamant NE. Development of esophageal function. Am Rev Respir Dis 1985;131(5):S29–S32. DOI: 10.1164/arrd.1985.131.S5.S29
  66. Ross MG, Nijland JM. Development of ingestive behavior. Am J Physiol 1998;274(4):R879–R893. DOI: 10.1152/ajpregu.1998.274.4.R879
  67. El-Haddad MA, Desai M, Gayle D, et al. In utero development of fetal thirst and appetite: potential for programming. J Soc Gynecol Investig 2004;11(3):123–130. DOI: 10.1016/j.jsgi.2003.12.001
  68. Grassi R, Farina R, Floriani I, et al. Assessment of fetal swallowing with gray-scale and color Doppler sonography. AJR Am J Roentgenol 2005;185(5):1322–1327. DOI: 10.2214/AJR.04.1114
  69. Kurjak A, Andonotopo W, Hafner T, et al. Normal standards for fetal neurobehavioral developments—longitudinal quantification by four-dimensional sonography. J Perinat Med 2006;34(1):56–65. DOI: 10.1515/JPM.2006.007
  70. Ross MG, Kullama LK, Ogundipe A, et al. Ovine fetal swallowing response to intracerebroventricular hypertonic saline. J Appl Physiol (1985) 1995;78(6):2267–2271. DOI: 10.1152/jappl.1995.78.6.2267
  71. Ross MG, Kullama LK, Ogundipe A, et al. Central angiotensin II stimulation of ovine fetal swallowing. J Appl Physiol 1994;76(3):1340–1345. DOI: 10.1152/jappl.1994.76.3.1340
  72. Davison JM, Gilmore EA, Dürr J, et al. Altered osmotic thresholds for vasopressin secretion and thirst in human pregnancy. Am J Physiol 1984;246(1 Pt 2):F105–F109. DOI: 10.1152/ajprenal.1984.246.1.F105
  73. Ross MG, Sherman DJ, Schreyer P, et al. Fetal rehydration via intraamniotic fluid: contribution of fetal swallowing. Pediat Res 1991;29(2):214–217. DOI: 10.1203/00006450-199102000-00023
  74. Nijland MJ, Kullama LK, Ross MG. Maternal plasma hypo-osmolality: effects on spontaneous and stimulated ovine fetal swallowing. J Matern Fetal Med 1998;7(4):165–171. DOI: 10.1002/(SICI)1520-6661(199807/08)7:4<165::AID-MFM1>3.0.CO;2-G
  75. El-Haddad MA, Chao CR, Ross MG. N-methyl-D-aspartate glutamate receptor mediates spontaneous and angiotensin II-stimulated ovine fetal swallowing. J Soc Gynecol Investig 2005;12(7):504–509. DOI: 10.1016/j.jsgi.2005.06.003
  76. Ross MG, Sherman DJ, Ervin MG, et al. Fetal swallowing: response to systemic hypotension. Am J Physiol 1990;258(1 Pt 2):R130–R134. DOI: 10.1152/ajpregu.1990.258.1.R130
  77. Nicolaidis S, Galaverna O, Meltzer CH. Extracellular dehydration during pregnancy increases salt appetite of offspring. Am J Physiol 1990;258(1 Pt 2):R281–R283. DOI: 10.1152/ajpregu.1990.258.1.R281
  78. Vijande M, Brime JI, López-Sela P, et al. Increased salt preference in adult offspring raised by mother rats consuming excessive amounts of salt and water. Regul Pept 1996;66(1–2):105–108. DOI: 10.1016/0167-0115(96)00042-0
  79. Bradley RM, Mistretta CM. The developing sense of taste. In: Denton DA, Coghlan JP, editors. Olfaction and taste V. New York: Academic; 1975. pp. 91–98.
  80. Salihagić A, Kurjak A, Medić M. Novije spoznaje o fiziologiji fetusa. In: Kurjak A, Ðelemiš J, editors. Ginekologija i perinatologija II. Varaždin: Tonomir; 2003. pp. 112–152.
  81. El-Haddad MA, Jia Y, Ross MG. Persistent sucrose stimulation of ovine fetal ingestion: lack of adaptation responses. J Matern Fetal Neonatal Med 2005;18(2):123–127. DOI: 10.1080/14767050500233860
  82. Kawamura K, Takebayashi S. The development of noradrenaline-, acetylcholinesterase-, neuropeptide Y- and vasoactive intestinal polypeptide-containing nerves in human cerebral arteries. Neurosci Lett 1994;175(1–2):1–4. DOI: 10.1016/0304-3940(94)91063-4
  83. Cetin I, Morpurgo PS, Radaelli T, et al. Fetal plasma leptin concentrations: relationship with different intrauterine growth patterns from 19 weeks to term. Pediatr Res 2000;48(5):646–651. DOI: 10.1203/00006450-200011000-00016
  84. Jaquet D, Leger J, Levy-Marchal C, et al. Ontogeny of leptin in human fetuses and newborns: effect of intrauterine growth retardation on serum leptin concentrations. J Clin Endocrinol Metab 1998;83(4):1243–1246. DOI: 10.1210/jcem.83.4.4731
  85. Roberts TJ, Caston-Balderrama A, Nijland MJ, et al. Central neuropeptide Y stimulates ingestive behavior and increases urine output in the ovine fetus. Am J Physiol Endocrinol Metab 2000;279(3)E494–E500. DOI: 10.1152/ajpendo.2000.279.3.E494
  86. Roberts TJ, Nijland MJ, Caston-Balderrama A, et al. Central leptin stimulates ingestive behavior and urine flow in the near term ovine fetus. Horm Metab Res 2001;33(3):144–150. DOI: 10.1055/s-2001-14928
  87. Ross MG, El-Haddad M, Desai M, et al. Unopposed orexic pathways in the developing fetus. Physiol Behav 2003;79(1):79–88. DOI: 10.1016/s0031-9384(03)00107-0
  88. Aparicio T, Kermorgant S, Darmoul D, et al. Leptin and Ob-Rb receptor isoform in the human digestive tract during fetal development. J Clin Endocrinol Metab 2005;90(11): 6177–6184. DOI: 10.1210/jc.2005-1498
  89. Adair LS. Child and adolescent obesity: epidemiology and developmental perspectives. Physiol Behav 2008;94(1):8–16. DOI: 10.1016/j.physbeh.2007.11.016
  90. Cunningham FG, Gant NF, Leveno KJ, et al. Williams Obstetrics. 21st ed. New York: McGraw-Hill; 2001.
  91. Kotecha S. Lung growth: implications for the newborn infant. Arch Dis Child Fetal Neonatal Ed 2000;82(1):F69–F74. DOI: 10.1136/fn.82.1.F69
  92. Dawes GS. Breathing before birth in animals and man. An essay in developmental medicine. N Engl J Med 1974;290(10):557–559. DOI: 10.1056/NEJM197403072901010
  93. Olver RE, Strang LB. Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. J Physiol 1974;241(2):327–357. DOI: 10.1113/jphysiol.1974.sp010659
  94. Jain L. Alveolar fluid clearance in developing lungs and its role in neonatal transition. Clin Perinatol 1999;26(3):585–599.
  95. Wigglesworth JS, Desai R. Effects on lung growth of cervical cord section in the rabbit fetus. Early Hum Dev 1979;3(1):51–65. DOI: 10.1016/0378-3782(79)90020-3
  96. de Vries JI, Visser GH, Prechtl HF. The emergence of fetal behavior. I. Qualitative aspects. Early Hum Dev 1982;7(4):301–322. DOI: 10.1016/0378-3782(82)90033-0
  97. Patrick J, Campbell K, Carmichael L, et al. A definition of human fetal apnea and the distribution of fetal apneic intervals during the last ten weeks of pregnancy. Am J Obstet Gynecol 1980;136(4):471–477. DOI: 10.1016/0002-9378(80)90673-0
  98. Natale R, Nasello-Paterson C, Connors G. Patterns of fetal breathing activity in the human fetus at 24 to 28 weeks of gestation. Am J Obstet Gynecol 1988;158(2):317–321. DOI: 10.1016/0002-9378(88)90146-9
  99. Connors G, Hunse C, Carmichael L, et al. Control of fetal breathing in the human fetus between 24 and 34 weeks’ gestation. Am J Obstet Gynecol 1989;160(4):932–938. DOI: 10.1016/0002-9378(89)90313-x
  100. Natale R, Patrick J, Richardson B. Effects of human maternal venous plasma glucose concentrations on fetal breathing movements. Am J Obstet Gynecol 1978;132(1):36–41. DOI: 10.1016/0002-9378(78)90795-0
  101. Patrick J, Natale R, Richardson B. Patterns of human fetal breathing activity at 34 to 35 weeks’ gestational age. Am J Obstet Gynecol 1978;132(5):507–513. DOI: 10.1016/0002-9378(78)90744-5
  102. Mirghani HM, Weerasinghe SD, Smith JR, et al. The effect of intermittent maternal fasting on human fetal breathing movements. J Obstet Gynaecol 2004;24(6):635–637. DOI: 10.1080/01443610400007844
  103. Roberts AB, Goldstein I, Romero R, et al. Fetal breathing movements after preterm premature rupture of membranes. Am J Obstet Gynecol 1991;164(3):821–825. DOI: 10.1016/0002-9378(91)90523-t
  104. Kivikoski AI, Amon E, Vaalamo PO, et al. Effect of third-trimester premature rupture of membranes on fetal breathing movements: a prospective case-control study. Am J Obstet Gynecol 1988;159(6):1474–1477. DOI: 10.1016/0002-9378(88)90577-7
  105. Richardson B, Natale R, Patrick J. Human fetal breathing activity during electively induced labor at term. Am J Obstet Gynecol 1979;133(3):247–255. DOI: 10.1016/0002-9378(79)90674-4
  106. Besinger RE, Compton AA, Hayashi RH. The presence or absence of fetal breathing movements as a predictor of outcome in preterm labor. Am J Obstet Gynecol 1987;157(3):753–757. DOI: 10.1016/s0002-9378(87)80044-3
  107. Kisilevsky BS, Hains SM, Low JA. Maturation of body and breathing movements in 24–33 week-old fetuses threatening to deliver prematurely. Early Hum Dev 1999;55(1):25–38. DOI: 10.1016/s0378-3782(99)00007-9
  108. Fox HE, Steinbrecher M, Pessel D, et al. Maternal ethanol ingestion and the occurrence of human fetal breathing movements. Am J Obstet Gynecol 1978;132(4):354–358. DOI: 10.1016/0002-9378(78)90766-4
  109. Richardson BS, O'Grady JP, Olsen GD. Fetal breathing movements and the response to carbon dioxide in patients on methadone maintenance. Am J Obstet Gynecol 1984;150(4):400–405. DOI: 10.1016/s0002-9378(84)80147-7
  110. Manning F, Wym Pugh E, Boddy K. Effect of cigarette smoking on fetal breathing movements in normal pregnancies. Br Med J 1975;1(5957):552–553. DOI: 10.1136/bmj.1.5957.552
  111. Ishikawa M, Yoneyama Y, Power GG, et al. Maternal theophylline administration and breathing movements in late-gestation human fetuses. Obstet Gynecol 1996;88(6):973–978. DOI: 10.1016/s0029-7844(96)00344-4
  112. Cosmi EV, Cosmi E, La Torre R. The effects of fetal breathing movements on the utero-fetal-placental circulation. Early Pregnancy (Cherry Hill) 2001;5(1):51–52. PMID: 11753512.
  113. Jobe A. Development of the fetal lung. In: Creasy RK, Resnik R, editors. Maternal-fetal medicine: principles and practice. 2nd ed. Philadelphia: WB Saunders Company; 1989. pp. 288–300.
  114. Haagsman HP, Demiel RV. Surfactant-associated proteins: functions and structural variations. Comp Biochem Physiol A Mol Integr Physiol 2001;129(1):91–108. DOI: 10.1016/s1095-6433(01)00308-7
  115. Vyas J, Kotecha S. The effect of antenatal and postnatal corticosteroids on the preterm lung. Arch Dis Child Fetal Neonatal Ed 1997;77(2):F147–F150. DOI: 10.1136/fn.77.2.f147
  116. Hundertmark S, Ragosch V, Zimmermann B, et al. Effect of dexamethasone, triiodothyronine and dimethyl-isopropyl-thyronine on lung maturation of the fetal rat lung. J Perinat Med 1999;27(4):309–315. DOI: 10.1515/JPM.1999.044
  117. Chan L, Miller TF, Yuxin J, et al. Antenatal triiodothyronine improves neonatal pulmonary function in preterm lambs. J Soc Gynecol Investig 1998;5(3):122–126. DOI: 10.1016/s1071-5576(97)00115-9
  118. Debieve F, Beerlandt S, Hubinot C, et al. Gonadotropines, prolactin, inhibin A, inhibin B, and activin A in human fetal serum from midpregnancy and term pregnancy. J Clin Endocrinol Metab 2000;85(1):270–274. DOI: 10.1210/jcem.85.1.6249
  119. Glass L, Rajegowda BK, Evans HE. Absence of respiratory distress syndrome in premature infants of heroin-addicted mothers. Lancet 1971;2(7726):685–686. DOI: 10.1016/s0140-6736(71)92250-1
  120. Thuresson-Klein A, Moawad AH, Hedqvust P. Estrogen stimulates formation of lamellar bodies and release of surfactant in the rat fetal lung. Am J Obstet Gynecol 1985;151(4):506–514. DOI: 10.1016/0002-9378(85)90279-0
  121. Adamson IY, Bakowska J, Mc Millan E, et al. Accelerated fetal lung maturation by estrogen is associated with an epithelial-fibroblast interaction. In Vitro Cell Dev Biol 1990;26(8):784–790. DOI: 10.1007/BF02623620
  122. Warburton D. Chronic hyperglycemia reduces surface active maternal flux in tracheal fluid of fetal lambs. J Clin Invest 1983;71(3):550–555. DOI: 10.1172/JCI110799
  123. Dekowski SA, Snyder JM. The combined effects of insulin and cortisol on surfactant protein mRNA levels. Pediatr Res 1995;38(4):513–521. DOI: 10.1203/00006450-199510000-00007
  124. Klein JM, Nielsen HC. Androgen regulation of epidermal growth factor receptor binding activity during fetal rabbit lung development. J Clin Invest 1993;91(2):425–431. DOI: 10.1172/JCI116218
  125. Hallman M, Glumoff V, Ramet M. Surfactant in respiratory distress syndrome and lung injury. Comp Biochem Physiol A Mol Integr Physiol. 2001;129(1):287–294. DOI: 10.1016/s1095-6433(01)00324-5
  126. Jobe AH, Ikegami M. Antenatal infection/inflammation and postnatal lung maturation and injury. Respir Res 2001;2(1):27–32. DOI: 10.1186/rr35
  127. Mardešić D, et al. Pedijatrija. 6. izd. Zagreb: Školska knjiga; 2000. pp. 303–394.
  128. Kleinmann LI. The kidney. In: Stave U, editor. Perinatal physiology. New York-London: Plenum Medical Book Company; 1978. pp. 589–616.
  129. Čvorić A. Razvoj bubrega i bubrežnih funkcija. In: Korać D, editor. Pedijatrija. Beograd-Zagreb: Medicinska knjiga; 1983. pp. 441–443.
  130. Gilbert T, Merlet-Bénichou C. Retinoids and nephron mass control. Pediatr Nephrol 2000;14(12):1137–1144. DOI: 10.1007/s004670000385
  131. Merlet-Benichou C, Gilbert T, Muffet-Joly M, et al. Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr Nephrol 1994;8(2):175–180. DOI: 10.1007/BF00865473
  132. Amri K, Freund N, Vilar J, et al. Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes 1999;48(11):2240–2245. DOI: 10.2337/diabetes.48.11.2240
  133. Gilbert T, Gaonach S, Moreau E, et al. Defect of nephrogenesis induced by gentamicin in rat metanephric organ culture. Lab Invest 1994;70(5):656–666. PMID: 8196362.
  134. Kurjak A, Kirkinen P, Latin V, et al. Ultrasonic assessment of fetal kidney function in normal and complicated pregnancies. Am J Obstet Gynecol 1981;141(3):266–270. DOI: 10.1016/s0002-9378(16)32631-x
  135. Wladimiroff JW. Effect of furosemide on fetal urine production. Br J Obstet Gynaecol 1975;82(3):221–224. DOI: 10.1111/j.1471-0528.1975.tb00623.x
  136. Aperia A, Larsson L, Zetterström R. Hormonal induction of Na–K–ATPase in developing proximal tubular cells. Am J Physiol 1981;241(4):F356–F360. DOI: 10.1152/ajprenal.1981.241.4.F356
  137. Schmidt U, Horster M. Na–K–activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol 1977;233(1):F55–F60. DOI: 10.1152/ajprenal.1977.233.1.F55
  138. Arant BS Jr. Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr 1978;92(5):705–712. DOI: 10.1016/s0022-3476(78)80133-4
  139. Karlen J, Paeria A, Zetterström R. Renal excretion of calcium and phosphate in preterm and term infants. J Pediatr 1985;106(5):814–819. DOI: 10.1016/s0022-3476(85)80364-4
  140. Schwartz GJ, Evan AP. Development of solute transport in rabbit proximal tubule. I. HCO–3 and glucose absorption. Am J Physol 1983;245(3):F382–F390. DOI: 10.1152/ajprenal.1983.245.3.F382
  141. Battaglia FC, Meschia IG. An introduction to fetal physiology. Orlando: Academic Press; 1986. pp. 154–167, 184–185.
  142. Devuyst O, Burrow CR, Smith BL, et al. Expression of aquaporins-1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease. Am J Physiol 1996;271(1 Pt 2):F169–F183. DOI: 10.1152/ajprenal.1996.271.1.F169
  143. Boylan PC, Parisi VM. Fetal acido-base balance. In: Creasy RK, Resnik R, editors. Maternal-fetal medicine: principles and practice. Philadelphia: WB Saunders Company; 1989. pp. 362–373.
  144. Winkler CA, Kittelberger AM, Watkins RH. Maturation of carbonic anhydrase IV expression in rabbit kidney. Am J Physiol Renal Physiol 2001;280(5):F895–F903. DOI: 10.1152/ajprenal.2001.280.5.F895
  145. McCance RA, Widdowson EM. Renal function before birth. In: Widdowson EM, editor. Studies in perinatal physiology. 1st ed. Bath: Pitman Press; 1980. pp. 94–103.
  146. McGroy WW. Development of renal function in utero. Cambridge: Harvard University Press; 1972. pp. 51–78.
  147. McCance RA, Young WF. The secretion of urine by newborn infants. In: Widdowson EM, editor. Studies in perinatal physiology. 1st ed. Bath: Pitman Press; 1980. pp. 45–50.
  148. McCance RA, Von Fimck. The titratable acidity, pH, ammonia, and phosphates in the urine of very young infants. In: Widdowson EM, editor. Studies in perinatal physiology. 1st ed. Bath: Pitman Press; 1980. pp. 81–88.
  149. Judaš M, Kostović I. Temelji neuroznanosti. 1st ed. Zagreb: MD; 1997. pp. 24–31, 622–642, 353–360.
  150. Okado N, Kakimi S, Kojima T. Synaptogenesis in the cervical cord of the human embryo: sequence of synapse formation in a spinal reflex pathway. J Comp Neurol 1979;184(3):491–518. DOI: 10.1002/cne.901840305
  151. Okado N, Kojima T. Ontogeny of the central nervous system: neurogenesis, fibre connection, synaptogenesis, and myelination in the spinal cord. In: Prechtl HFR, editor. Continuity of neural function from prenatal to postnatal life. Oxford: Blackwell Science; 1984. pp. 31–35.
  152. Landmesser L, Morris DG. The development of functional innervation in the hind limb of the chick embryo. J Physiol 1975;249(2):301–326. DOI: 10.1113/jphysiol.1975.sp011017
  153. Prechtl HF. Ultrasound studies of human fetal behaviour. Early Hum Dev 1985;12(2):91–98. DOI: 10.1016/0378-3782(85)90173-2
  154. Ianniruberto A, Tajani E. Ultrasonographic study of fetal movements. Semin Perinatol 1981;5(2):175–181. PMID: 7323822.
  155. Okado N. Onset of synapse formation in the human spinal cord. J Comp Neurol 1981;201(2):211–219. DOI: 10.1002/cne.902010206
  156. Joseph R. Fetal brain behavior and cognitive development. Dev Rev 2000;20(1):81–98. DOI: 10.1006/drev.1999.0486
  157. Pomeroy SL, Volpe JJ. Development of the nervous system. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. Philadelphia: WB Saunders Company; 1992. pp. 1491–1509.
  158. Kostović I, Judas M. Transient patterns of cortical lamination during prenatal life: do they have implications for treatment? Neurosci Biobehav Rev 2007;31(8):1157–1168. DOI: 10.1016/j.neubiorev.2007.04.018
  159. Molliver ME, Kostovic I, Van der Loos H. The development of synapses in cerebral cortex of the human fetus. Brain Res 1973;50(2):403–407. DOI: 10.1016/0006-8993(73)90741-5
  160. Lüchinger AB, Hadders-Algra M, van Kan CM, et al. Fetal onset of general movements. Pediatr Res 2008;63(2):191–195. DOI: 10.1203/PDR.0b013e31815ed03e
  161. Kurjak A, Azumendi G, Vecek N, et al. Fetal hand movements and facial expression in normal pregnancy studied by four-dimensional sonography. J Perinat Med 2003;31(6):496–508. DOI: 10.1515/JPM.2003.076
  162. Andonotopo W, Medic M, Salihagic-Kadic A, et al. The assessment of fetal behavior in early pregnancy: comparison between 2D and 4D sonographic scanning. J Perinat Med 2005;33(5):406–414. DOI: 10.1515/JPM.2005.073
  163. Awoust J, Levi S. Neurological maturation of the human fetus. Ultrasound Med Biol 1983;(Suppl 2):583–587. PMID: 6400283.
  164. Inoue M, Koyanagi T, Nakahara H, et al. Functional development of human eye movement in utero assessed quantitatively with real-time ultrasound. Am J Obstet Gynecol 1986;155(1):170–174. DOI: 10.1016/0002-9378(86)90105-5
  165. Kostovic’ I, Rakic P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 1990;297(3):441–470. DOI: 10.1002/cne.902970309
  166. Kostovic’ I, Judas M, Petanjek Z, et al. Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psychophysiol 1995;19(2):85–102. DOI: 10.1016/0167-8760(94)00081-O
  167. D'Elia A, Pighetti M, Moccia G, et al. Spontaneous motor activity in normal fetuses. Early Hum Dev. 2001;65(2):139–147. DOI: 10.1016/s0378-3782(01)00224-9
  168. Natale R, Nasello-Paterson C, Turliuk R. Longitudinal measurements of fetal breathing, body movements, heart rate and heart rate accelerations and decelerations at 24 and 32 weeks of gestation. Am J Obstet Gynecol 1985;151(2):256–263. DOI: 10.1016/0002-9378(85)90022-5
  169. Eller DP, Stramm SL, Newman RB. The effect of maternal intravenous glucose administration on fetal activity. Am J Obstet Gynecol. 1992;167(4 Pt 1):1071–1074. DOI: 10.1016/s0002-9378(12)80040-8
  170. Haddres-Algra M. Putative neural substrate of normal and abnormal general movements. Neurosci Biobehav Rev 2007;31(8):1181–1190. DOI: 10.1016/j.neubiorev.2007.04.009
  171. Kurjak A, Azumendi G, Andonotopo W, et al. Three- and four-dimensional ultrasonography for the structural and functional evaluation of the fetal face. Am J Obstet Gynecol 2007;196(1):16–28. DOI: 10.1016/j.ajog.2006.06.090
  172. Kozuma S, Baba K, Okai T, et al. Dynamic observation of the fetal face by three-dimensional ultrasound
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.