Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 17 , ISSUE 4 ( October-December, 2023 ) > List of Articles


From Fetal to Neonatal Neurobehavior

Milan Stanojevic, Sanja Malinac, Asim Kurjak, Edin Medjedović

Keywords : Brain, Cerebral palsy, Four-dimensional ultrasound, Fetus, Neonate, Neurological impairment

Citation Information : Stanojevic M, Malinac S, Kurjak A, Medjedović E. From Fetal to Neonatal Neurobehavior. Donald School J Ultrasound Obstet Gynecol 2023; 17 (4):323-331.

DOI: 10.5005/jp-journals-10009-1992

License: CC BY-NC 4.0

Published Online: 28-12-2023

Copyright Statement:  Copyright © 2023; The Author(s).


There is also a continuity of fetal and neonatal movements, which are important indicators of developmental processes of the brain. The aim of the paper is to present neurological prenatal and postnatal assessment of behavior, which is affected by the continuity of general and other movements from prenatal to postnatal life. A prenatal neurological test has been developed using four-dimensional ultrasound (4D US) to assess isolated head anteflexion, eye blinking, facial and mouth movements, leg, hand and finger movements, cranial sutures, and general movement (GM) gestalt perception, all included in the Kurjak antenatal neurodevelopmental test (KANET). Neurological assessment should be continued postnatally as clinical investigation and assessment of Prechtl's GMs. Continuity of assessments relates to the continuity of fetal to neonatal movements, understanding which gives clinicians the opportunity for earlier detection of neurological disability. The diagnosis of cerebral palsy (CP) as the most severe neurological disability is retrospective, and it is exceptionally made before the age of 6 months in only the most severely affected infants; the specificity of the diagnosis will improve as the child ages and the nature of the disability evolves. Interest in the diagnosis of neurological impairment among experts using 4D US has recently shifted toward the prenatal period. Are we approaching the era of the development of diagnostic tests to detect nonreassuring fetal neurological status in its intrauterine life to intervene at appropriate times in order to decrease the CP rate? It is questionable if the KANET test could be the tool to achieve this desire.

  1. Schacher S. Determination and differentiation in the development of the nervous system. In: Kandel ER, Schwartz JH. Principles of neural science. 2nd edition. New York-Amsterdam- Oxford: Elsevier Science Publishing, 1985:730–732.
  2. Kostović I. Prenatal development of nucleus basalis complex and related fiber systems in man: a histochemical study. Neuroscience 1986;17(4):1047–1077. DOI: 10.1016/0306-4522(86)90077-1
  3. Kostovic I. Zentralnervensystem. In: Hinrichsen KV (Ed.), Humanembryologie. Berlin: Springer-Verlag, 1990:381–448.
  4. Kopić J, Junaković A, Salamon I, et al. Early regional patterning in the human prefrontal cortex revealed by laminar dynamics of deep projection neuron markers. Cells 2023;12(2). DOI: 10.3390/cells12020231
  5. Bethlehem RAI, Seidlitz J, White SR, et al. Brain charts for the human lifespan. Nature 2022;604(7906):525–533. DOI: 10.1038/s41586-022-04554-y
  6. Ahmed B, Kurjak A, Andonotopo W, et al. Fetal behavioral and structural abnormalities in high risk fetuses assessed by 4D sonography. Ultrasound Rev Obstet Gynecol 2005;5(4):275–287. DOI: 10.3109/14722240500386867
  7. Himmelmann K, Hagberg G, Wiklund LM, et al. Dyskinetic cerebral palsy: a population-based study of children born between 1991 and 1998. Dev Med Child Neurol 2007;49(4):246–251. DOI: 10.1111/j.1469-8749.2007.00246.x
  8. Delobel-Ayoub M, Ehlinger V, Klapouszczak D, et al. Prevalence and characteristics of children with cerebral palsy according to socioeconomic status of areas of residence in a French department. PLoS One. 2022;17(5):e0268108. DOI: 10.1371/journal.pone.0268108
  9. Wyatt JS, Gluckman PD, Liu PY, et al. Determinants of outcomes after head cooling for neonatal encephalopathy. Pediatrics 2007;119(5):912–921. DOI: 10.1542/peds.2006-2839.
  10. Jacobs SE, Berg M, Hunt R, et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2013;2013(1):CD003311. DOI: 10.1002/14651858.CD003311.pub3
  11. Satar M, Okulu E, Yıldızdaş HY. Editorial: new perspectives of hypoxic ischemic encephalopathy. Front Pediatr 2023;11:1251446. DOI: 10.3389/fped.2023.1251446
  12. Inamdar K, Molinini RM, Panibatla ST, et al. Physical therapy interventions to improve sitting ability in children with or at-risk for cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol 2021;63(4):396–406. DOI: 10.1111/dmcn.14772
  13. Hemminki K, Li X, Sundquist K, et al. High familial risks for cerebral palsy implicate partial heritable aetiology. Paediatr Perinat Epidemiol 2007;21(3):235–241. DOI: 10.1111/j.1365-3016.2007.00798.x
  14. Li N, Zhou P, Tang H, et al. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain 2022;145(1):119–141. DOI: 10.1093/brain/awab209
  15. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy april 2006. Dev Med Child Neurol 2007;109:8–14.
  16. Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral palsy: current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr Dis Treat 2020;16:1505–1518. DOI: 10.2147/NDT.S235165
  17. Palmer FB. Strategies for the early diagnosis of cerebral palsy. J Pediatr 2004;145(2 Suppl):S8–S11. DOI: 10.1016/j.jpeds.2004.05.016
  18. Walstab JE, Bell RJ, Reddihough DS, et al. Factors identified during the neonatal period associated with risk of cerebral palsy. Aust N Z J Obstet Gynecol 2004;44(4):342–346. DOI: 10.1111/j.1479-828X.2004.00249.x
  19. Morgan C, Romeo DM, Chorna O, et al. The pooled diagnostic accuracy of neuroimaging, general movements, and neurological examination for diagnosing cerebral palsy early in high-risk infants: a case control study. J Clin Med 2019;8(11):1879. DOI: 10.3390/jcm8111879
  20. Chen D, Huang M, Yin Y, et al. Risk factors of cerebral palsy in children: a systematic review and meta-analysis. Transl Pediatr 2022;11(4):556–564. DOI: 10.21037/tp-22-78
  21. Shepherd E, Salam RA, Middleton P, et al. Neonatal interventions for preventing cerebral palsy: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev 2018;6(6):CD012409. DOI: 10.1002/14651858.CD012409.pub2
  22. Niemuth M, Küster H, Simma B, et al. A critical appraisal of tools for delivery room assessment of the newborn infant. Pediatr Res 2021. DOI: 10.1038/s41390-021-01896-7
  23. McIntyre S, Goldsmith S, Webb A, et al. Global prevalence of cerebral palsy: a systematic analysis. Dev Med Child Neurol 2022;64(12):1494–1506. DOI: 10.1111/dmcn.15346
  24. MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 2015;213(6):779–788. DOI: 10.1016/j.ajog.2015.05.034
  25. Cortese M, Moster D, Wilcox AJ. Term birth weight and neurodevelopmental outcomes. Epidemiology 2021;32(4):583–590. DOI: 10.1097/EDE.0000000000001350
  26. Wu YW, Croen LA, Shah SJ, et al. Cerebral palsy in a term population: risk factors and neuroimaging findings. Pediatrics 2006;118(2);690–697. DOI: 10.1542/peds.2006-0278
  27. Zhou L, Meng Q, von Ehrenstein OS, et al. Parental age and childhood risk for cerebral palsy in California. J Pediatr 2023;255:147–53.e6. DOI: 10.1016/j.jpeds.2022.10.039
  28. Molad M, Gover A, Marai Z, et al. Neurodevelopmental outcome of very low birth weight infants in the Northern district of Israel: a cross-sectional study. Children (Basel) 2023;10(8). DOI: 10.3390/children10081320
  29. Nelson KB, Ellenberg JH. Neonatal signs as predictors of cerebral palsy. Pediatrics 1979;64(2):225–232.
  30. Reid SM, Dagia CD, Ditchfield MR, et al. Population-based studies of brain imaging patterns in cerebral palsy. Dev Med Child Neurol 2014;56(3):222–232. DOI: 10.1111/dmcn.12228
  31. Hadders-Algra M. Early diagnosis and early intervention in cerebral palsy. Front Neurol 2014;5:185. DOI: 10.3389/fneur.2014.00185
  32. Palomo-Carrión R, Pinero-Pinto E, Romay-Barrero H, et al. Shall we start? Ready, set, go! Toward early intervention in infants with unilateral cerebral palsy. A randomized clinical trial protocol. Ther Adv Chronic Dis 2022;13:20406223221136059. DOI: 10.1177/20406223221136059
  33. Amiel Tison C, Gosselin J, Kurjak A. Neurosonography in the second half of fetal life: a neonatologist point of view. J Perinat Med 2006;34(6):437–446. DOI: 10.1515/JPM.2006.088
  34. Kurjak A, Miskovic B, Andonotopo W, et al. How useful is 3D and 4D in perinatal medicine? J Perinat Med 2007;35(1):10–27. DOI: 10.1515/JPM.2007.002
  35. Alzubaidi M, Agus M, Alyafei K, et al. Toward deep observation: a systematic survey on artificial intelligence techniques to monitor fetus via ultrasound images. iScience 2022;25(8):104713. DOI: 10.1016/j.isci.2022.104713
  36. Zhao X, Awrejcewicz J, Li J, et al. The lower limb movements of the fetus in uterus: a narrative review. Appl Bionics Biomech 2023;2023:4324889. DOI: 10.1155/2023/4324889
  37. Gurbuz A, Karateke A, Yilmaz U, et al. The role of perinatal and intrapartum risk factors in the etiology of cerebral palsy in term deliveries in a Turkish population. J Matern Fetal Neonatal Med 2006;19(3):147–155. DOI: 10.1080/14767050500476212
  38. Gosselin J, Gahagan S, Amiel-Tison C. The Amiel-Tison neurological assessment at term: conceptual and methodological continuity in the course of follow-up. Ment Retard Dev Disabil Res Rev 2005;11(1):34–51. DOI: 10.1002/mrdd.20049
  39. Côté-Corriveau G, Simard MN, Beaulieu O, et al. Associations between neurological examination at term-equivalent age and cerebral hemodynamics and oxygen metabolism in infants born preterm. Front Neurosci 2023;17:1105638. DOI: 10.3389/fnins.2023.1105638
  40. Amiel-Tison C. Update of the Amiel-Tison neurological assessment for the term neonate or at 40 weeks corrected age. Pediatr Neurol. 2002;27(3):196–212. DOI: 10.1016/s0887-8994(02)00436-8
  41. Troha Gergeli A, Škofljanec A, Neubauer D, et al. Prognostic value of various diagnostic methods for long-term outcome of newborns after hypoxic-ischemic encephalopathy treated with hypothermia. Front Pediatr 2022;10:856615. DOI: 10.3389/fped.2022.856615
  42. Volpe JJ. Neurology of the Newborn, 4th edition. Philadelphia: WB Saunders; 2001. p. 127.
  43. Khan OA, Garcia-Sosa R, Hageman JR, et al. Core concepts: neonatal neurological examination. Neoreviews 2014;15(8):e316–e324. DOI: 10.1542/neo.15-8-e316
  44. Stahlmann N, Härtel C, Knopp A, et al. Predictive value of neurodevelopmental assessment versus evaluation of general movements for motor outcome in preterm infants with birth weights <1500 g. Neuropediatrics 2007;38(2):91–99. DOI: 10.1055/s-2007-984450
  45. Zang FF, Yang H, Han Q, et al. Very low birth weight infants in China: the predictive value of the motor repertoire at 3 to 5months for the motor performance at 12 months. Early Hum Dev 2016;100:27–32. DOI: 10.1016/j.earlhumdev.2016.03.010
  46. Salavati S, Berghuis SA, Bosch T, et al. A comparison of the early motor repertoire of very preterm infants and term infants. Eur J Paediatr Neurol 2021;32:73–79. DOI: 10.1016/j.ejpn.2021.03.014
  47. Dubowitz L, Dubowitz V, Mercuri E. The Neurological Assessment of the Preterm and Full-Term Infant. 2nd ed. Mac Keith Press; London, UK, 1999:1–167.
  48. Romeo DM, Ricci D, Brogna C, et al. Use of the Hammersmith infant neurological examination in infants with cerebral palsy: a critical review of the literature. Dev Med Child Neurol 2016;58(3):240–245. DOI: 10.1111/dmcn.12876
  49. Hadders-Algra M, Tacke U, Pietz J, et al. Reliability and predictive validity of the standardized infant neurodevelopmental assessment neurological scale. Dev Med Child Neurol 2019;61(6):654–660. DOI: 10.1111/dmcn.14045
  50. Einspieler C, Prechtl HFR, Bos AF, et al. Prec htl's Method on the Qualitative Assessment of General Movements in Preterm, Term and Young Infants. Mac Keith Press: Cambridge, 2004.
  51. Hadders-Algra M. General movements: A window for early identification of children at high risk for developmental disorders. J Pediatr 2004;145(2 Suppl):S12–S18. DOI: 10.1016/j.jpeds.2004.05.017
  52. Kadam AS, Nayyar SA, Kadam SS, et al. General movement assessment in babies born preterm: motor optimality score-revised (MOS-R), trajectory, and neurodevelopmental outcomes at 1 year. J Pediatr X 2023;8:100084. DOI: 10.1016/j.ympdx.2022.100084
  53. Raghuram K, Orlandi S, Church P, et al. Automated movement analysis to predict cerebral palsy in very preterm infants: an ambispective cohort study. Children (Basel) 2022;9(6). DOI: 10.3390/children9060843
  54. Marschik PB, Kwong AKL, Silva N, et al. Mobile solutions for clinical surveillance and evaluation in infancy-general movement apps. J Clin Med 2023;12(10): DOI: 10.3390/jcm12103576
  55. Prechtl HF. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum Dev 1990;23(3):151–158. DOI: 10.1016/0378-3782(90)90011-7
  56. Dicanio D, Spoto G, Alibrandi A, et al. Long-term predictivity of early neurological assessment and developmental trajectories in low-risk preterm infants. Front Neurol 2022;13:958682. DOI: 10.3389/fneur.2022.958682
  57. de Vries JI, Visser GH, Prechtl HF. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum Dev 1982;7(4):301–322. DOI: 10.1016/0378-3782(82)90033-0
  58. Dolinskaya IY, Solopova IA, Zhvansky DS, et al. Muscle activity during passive and active movements in preterm and full-term infants. Biology (Basel) 2023;12(5): DOI: 10.3390/biology12050724
  59. Hadders-Algra M, Klip-Van den Nieuwendijk A, Martijn A, et al. Assessment of general movements: towards a better understanding of a sensitive method to evaluate brain function in young infants. Dev Med Child Neurol 1997;39(2):88–98. DOI: 10.1111/j.1469-8749.1997.tb07390.x
  60. Hadders-Algra M. Early diagnostics and early intervention in neurodevelopmental disorders-age-dependent challenges and opportunities. J Clin Med 2021;10(4):861. DOI: 10.3390/jcm10040861
  61. Bekedam DJ, Visser GH, de Vries JJ, et al. Motor behaviour in the growth retarded fetus. Early Hum Dev 1985;12(2):155–165. DOI: 10.1016/0378-3782(85)90178-1
  62. Zizzo AR, Kirkegaard I, Hansen J, et al. Fetal heart rate variability is affected by fetal movements: a systematic review. Front Physiol 2020;11:578898. DOI: 10.3389/fphys.2020.578898
  63. Cioni G, Prechtl HF. Preterm and early postterm motor behaviour in low-risk premature infants. Early Hum Dev 1990;23:159–1191. DOI: 10.1016/0378-3782(90)90012-8
  64. Whitehead K, Meek J, Fabrizi L, et al. Long-range temporal organisation of limb movement kinematics in human neonates. Clin Neurophysiol Pract 2020;5:194–198. DOI: 10.1016/j.cnp.2020.07.007
  65. Sival DA, Brouwer OF, Bruggink JL, et al. Movement analysis in neonates with spina bifida aperta. Early Hum Dev 2006;82(4):227–234. DOI: 10.1016/j.earlhumdev.2005.09.002
  66. Hadders-Algra M. Early human brain development: Starring the subplate. Neurosci Biobehav Rev 2018;92:276–290. DOI: 10.1016/j.neubiorev.2018.06.017
  67. Hadders-Algra M. Early human motor development: From variation to the ability to vary and adapt. Neurosci Biobehav Rev 2018;90:411–427. DOI: 10.1016/j.neubiorev.2018.05.009
  68. Seme-Ciglenecki P. Predictive value of assessment of general movements for neurological development of high-risk preterm infants: comparative study. Croat Med J 2003;44(6):721–727.
  69. Zhou J, Li S, Gu L, et al. General movement assessment is correlated with neonatal behavior neurological assessment/cerebral magnetic resonance imaging in preterm infants. Medicine (Baltimore) 2021;100(37):e27262. DOI: 10.1097/MD.0000000000027262
  70. Seesahai J, Luther M, Church PT, et al. The assessment of general movements in term and late-preterm infants diagnosed with neonatal encephalopathy, as a predictive tool of cerebral palsy by 2 years of age-a scoping review. Syst Rev 2021;10(1):226. DOI: 10.1186/s13643-021-01765-8
  71. Kurjak A, Azumendi G, Vecek N, et al. Fetal hand movements and facial expression in normal pregnancy studied by four-dimensional sonography. J Perinat Med 2003;31(6):496–508. DOI: 10.1515/JPM.2003.076
  72. Kurjak A, Stanojevic M, Andonotopo W, et al. Fetal behavior assessed in all three trimesters of normal pregnancy by four-dimensional ultrasonography. Croat Med J 2005;46(5):772–780.
  73. Kurjak A, Tikvica A, Stanojevic M, et al. The assessment of fetal neurobehavior by three-dimensional and four-dimensional ultrasound. J Matern Fetal Neonatal Med 2008;21(10):675–684. DOI: 10.1080/14767050802212166
  74. Kurjak A, Abo-Yaqoub S, Stanojevic M, et al. The potential of 4D sonography in the assessment of fetal neurobehavior–multicentric study in high-risk pregnancies. J Perinat Med 2010;38(1):77–82. DOI: 10.1515/jpm.2010.012
  75. Kurjak A, Spalldi Barišić L, Stanojević M, et al. Multi-center results on the clinical use of KANET. J Perinat Med 2019;47(9):897–909. DOI: 10.1515/jpm-2019-0281
  76. Morgan C, Fetters L, Adde L, et al. Early intervention for children aged 0 to 2 years with or at high risk of cerebral palsy: International Clinical Practice Guideline based on systematic reviews. JAMA Pediatr 2021;175(8):846–858. DOI: 10.1001/jamapediatrics.2021.0878
  77. Novak I, Morgan C, Adde L, et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr 2017;171(9):897–907. DOI: 10.1001/jamapediatrics.2017.1689
  78. Kurjak A, Stanojevic M, Andonotopo W, et al. Behavioral pattern continuity from prenatal to postnatal life–a study by four-dimensional (4D) ultrasonography. J Perinat Med 2004;32(4):346–353. DOI: 10.1515/JPM.2004.065
  79. Stanojevic M, Perlman M, Andonotopo W, et al. From fetal to neonatal behavioral status. Ultrasound Rev Obstet Gynecol 2004;4(1):459–471. DOI: 10.1080/14722240410001713939.
  80. Stanojevic M, Zaputovic S, Bosnjak AP. Continuity between fetal and neonatal neurobehavior. Semin Fetal Neonatal Med 2012;17(6):324–329. DOI: 10.1016/j.siny.2012.06.006
  81. Stanojevic M, Kurjak A. Are fetus and neonate the same individual in terms of behavior? Donald School J Ultrasound Obstet Gynecol 2022;16(3):238–49. DOI: 10.5005/jp-journals-10009-1937
  82. Kurjak A, Stanojevic M, Azumendi G, et al. The potential of four-dimensional (4D) ultrasonography in the assessment of fetal awareness. J Perinat Med 2005;33(1):46–53. DOI: 10.1515/JPM.2005.008
  83. Stanojevic M, Kurjak A, Kadic AS, et al. Fetal awareness. Donald School J Ultrasound Obstet Gynecol 2021;15(2):188–94. DOI: 10.5005/jp-journals-10009-1700
  84. Kadic AS, Kurjak A. Cognitive functions of the fetus. Ultraschall Med 2018;39(2):181–189. DOI: 10.1055/s-0043-123469
  85. Salihagić Kadić A, Šurina A, Vasilj O, et al. Fetal cognitive functions and 3D/4D ultrasound. Donald School J Ultrasound Obstet Gynecol 2019;13(1):41–53. DOI: 10.5005/jp-journals-10009-1584
  86. Kurjak A, Stanojević M, Salihagić-Kadić A, et al. Is four-dimensional (4D) ultrasound entering a new field of fetal psychiatry? Psychiatr Danub 2019;31(2):133–140. DOI: 10.24869/psyd.2019.133
  87. Kurjak A, Salihagić-Kadić A, Jakovljević M, et al. Cognitive development and intelligence, mental health and mental disorders – do they have an antenatal origin? Socijalna Psihijatrija 2020;48(4):382–403. DOI: 10.24869/spsih.2020.382.
  88. Sarnat HB. Anatomic and physiologic correlates of neurologic development in prematurity. In: Sarnat HB (Ed). Topics in Neonatal Neurology. New York: Grune and Stratton; 1984. pp. 1–24.
  89. Sarnat HB. Functions of the corticospinal and corticobulbar tracts in the human newborns. J Pediatr Neurol 2003;1(1):3–8.
  90. Scher MS. “The First Thousand Days” Define a Fetal/Neonatal Neurology Program. Front Pediatr 2021;9:683138. DOI: 10.3389/fped.2021.683138
  91. Amiel-Tison C. Clinical assessment of the infant nervous system. In: Levene MI, Chervenak FA, Whittle M (Eds). Fetal and Neonatal Neurology and Neurosurgery, 3rd edition. Churchill Livingstone: London; 2001. pp. 99–120.
  92. Scher MS. Gene-environment interactions during the first thousand days influence childhood neurological diagnosis. Semin Pediatr Neurol 2022;42:100970. DOI: 10.1016/j.spen.2022.100970
  93. Kostović I, Judas M, Petanjek Z, et al. Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psychophysiol 1995;19(2):85–102. DOI: 10.1016/0167-8760(94)00081-o
  94. Kostović I, Seress L, Mrzljak L, et al. Early onset of synapse formation in the human hippocampus: a correlation with Nissl-Golgi architectonics in 15- and 16.5-week-old fetuses. Neuroscience 1989;30(1):105–116. DOI: 10.1016/0306-4522(89)90357-6
  95. Kostović I, Išasegi IŽ, Krsnik Ž. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. J Anat 2019;235(3):481–506. DOI: 10.1111/joa.12920
  96. Lemaître H, Augé P, Saitovitch A, et al. Rest functional brain maturation during the first year of life. Cereb Cortex 2021;31(3):1776–1785. DOI: 10.1093/cercor/bhaa325
  97. Junaković A, Kopić J, Duque A, et al. Laminar dynamics of deep projection neurons and mode of subplate formation are hallmarks of histogenetic subdivisions of the human cingulate cortex before onset of arealization. Brain Struct Funct 2023;228(2):613–633. DOI: 10.1007/s00429-022-02606-7
  98. Mutch L, Alberman E, Hagberg B, et al. Cerebral palsy epidemiology: where are we now and where are we going? Dev Med Child Neurol 1992;34(6):547–551. DOI: 10.1111/j.1469-8749.1992.tb11479.x
  99. van Eyk CL, Fahey MC, Gecz J. Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology. Nat Rev Neurol 2023;19(9):542–555. DOI: 10.1038/s41582-023-00847-6
  100. Bax M, Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol 2005;47(8):571–576. DOI: 10.1017/s001216220500112x
  101. Schiariti V, Longo E, Shoshmin A, et al. Implementation of the International Classification of Functioning, Disability, and Health (ICF) core sets for children and youth with cerebral palsy: global initiatives promoting optimal functioning. Int J Environ Res Public Health 2018;15(9): DOI: 10.3390/ijerph15091899
  102. Sankar C, Mundkur N. Cerebral palsy-definition, classification, etiology and early diagnosis. Indian J Pediatr 2005;72(10): 865–868. DOI: 10.1007/BF02731117
  103. Shapiro BK. Cerebral palsy: A reconceptualization of the spectrum. J Pediatr 2004;145(2 Suppl):S3–S7. DOI: 10.1016/j.jpeds.2004.05.014
  104. Tomasovic S, Predojevic M. 4D ultrasound - medical devices for recent advances on the etiology of cerebral palsy. Acta Inform Med 2011;19(4):228–234. DOI: 10.5455/aim.2011.19.228-234
  105. Amiel-Tison C, Gosselin J, Infante-Rivard C. Head growth and cranial assessment at neurological examination in infancy. Dev Med Child Neurol 2002;44(9):643–648. DOI: 10.1017/s0012162201002699
  106. Martini M, Klausing A, Lüchters G, et al. Head circumference - a useful single parameter for skull volume development in cranial growth analysis? Head Face Med 2018;14(1):3. DOI: 10.1186/s13005-017-0159-8
  107. Arnold N, Ascherl RG, Thome UH. Charts and LMS tables of transfontanellar and transvertical ear-to-ear distances for gestational age. Front Pediatr 2022;10:838333. DOI: 10.3389/fped.2022.838333
  108. Pooh RK, Pooh K, Nakagawa Y, et al. Clinical application of three-dimensional ultrasound in fetal brain assessment. Croat Med J 2000;41(3):245–251.
  109. Pooh RK, Ogura T. Normal and abnormal fetal hand positioning and movement in early pregnancy detected by three- and four-dimensional ultrasound. Ultrasound Rev Obstet Gynecol 2004;4(1):46–51. DOI: 10.1080/14722240410001700249
  110. Campbell S, Lees C, Moscoso G, et al. Ultrasound antenatal diagnosis of cleft palate by a new technique: the 3D “reverse face” view. Ultrasound Obstet Gynecol 2005;25(1):12–18. DOI: 10.1002/uog.1819
  111. Clark AE, Biffi B, Sivera R, et al. Developing and testing an algorithm for automatic segmentation of the fetal face from three-dimensional ultrasound images. R Soc Open Sci 2020;7(11):201342. DOI: 10.1098/rsos.201342
  112. Gonçalves LF, Lee W, Espinoza J, et al. Three- and 4-dimensional ultrasound in obstetric practice: does it help? J Ultrasound Med 2005;24(12):1599–1624. DOI: 10.7863/jum.2005.24.12.1599
  113. de Vries JIP, Visser GHA, Prechtl HFR. Fetal motility in the first half of pregnancy. In: Prechtl HFR (Ed). Continuity of Neural Functions from Prenatal to Postnatal Life. Oxford: Blackwell; 1984. pp. 46–63.
  114. DiPietro JA. Neurobehavioral assessment before birth. Ment Retard Dev Disabil Res Rev 2005;11(1):4–13. DOI: 10.1002/mrdd.20047
  115. DiPietro JA, Costigan KA, Voegtline KM. Studies in fetal behavior: revisited, renewed, and reimagined. Monogr Soc Res Child Dev 2015;80(3):vii;1–vii94. DOI: 10.1111/mono.v80.3
  116. Kurjak A, Miskovic B, Stanojevic M, et al. New scoring system for fetal neurobehavior assessed by three- and four-dimensional sonography. J Perinat Med 2008;36(1):73–81. DOI: 10.1515/JPM.2008.007
  117. Stanojevic M, Talic A, Miskovic B, et al. An attempt to standardize Kurjak's antenatal neurodevelopmental test: Osaka consensus statement. Donald School J Ultrasound Obstet Gynecol 2011;5:317–329. DOI: 10.5005/jp-journals-10009-1209
  118. Stanojevic M, Antsaklis P, Salihagic Kadic A, et al. Is Kurjak antenatal neurodevelopmental test ready for routine clinical application: Bucharest consensus statement. Donald School J Ultrasound Obstet Gynecol 2015;9(3):260–265. DOI: 10.5005/jp.journals-100009-1412
  119. Kurjak A, Stanojević M, Spalldi Barišić L, et al. A critical appraisal of Kurjak antenatal neurodevelopmental test: five years of wide clinical use. Donald School J Ultrasound Obstet Gynecol 2020;14(4):304–310. DOI: 10.5005/jp-journals-10009-1669
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.