Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 16 , ISSUE 4 ( October-December, 2022 ) > List of Articles

Images in Obstetrics

Superb Microvascular Imaging Generation 4 for Depiction of Fetal Peripheral Microvessels

Toshiyuki Hata, Tomomi Kawahara, Aya Koyanagi, Riko Takayoshi, Takahito Miyake

Keywords : Anterior auricular artery, Digital artery, Fetal peripheral microvessel, Popliteal artery, Superb microvascular imaging generation 4, superficial temporal artery

Citation Information : Hata T, Kawahara T, Koyanagi A, Takayoshi R, Miyake T. Superb Microvascular Imaging Generation 4 for Depiction of Fetal Peripheral Microvessels. Donald School J Ultrasound Obstet Gynecol 2022; 16 (4):329-334.

DOI: 10.5005/jp-journals-10009-1945

License: CC BY-NC 4.0

Published Online: 26-12-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Objective: To demonstrate fetal peripheral microvessels using superb microvascular imaging generation 4 (SMI Gen4). Materials and methods: A total of 20 healthy fetuses were studied to depict peripheral microvessels using SMI Gen4 with a transabdominal linear probe (5–18 MHz) at 13–36 weeks of gestation. Results: Fetal intracranial vessels were clearly identified early in the second trimester of pregnancy. Superficial temporal and anterior auricular arteries could be recognized. The adrenal microvasculature was also evident. Microvessels of the fingers could be noted. Moreover, microvessels of the thigh, knee, foot, and digital vessels of the toes could be clearly identified. Conclusion: Superb microvascular imaging generation 4 (SMI Gen4) will be a breakthrough approach for the depiction of fetal peripheral microvessels and organ microvasculature. Further studies involving a larger sample size are needed to ascertain the clinical relevance of SMI Gen4 in clinical fetal medicine and future fetal research.


PDF Share
  1. Hasegawa J, Yamada H, Kawasaki E, et al. Application of superb micro-vascular imaging (SMI) in obstetrics. J Matern Fetal Neonatal Med 2018;31(2):261–263. DOI: 10.1080/14767058.2016.1278206
  2. Hata T, Mori N, AboEllail MAM, et al. SMI with Doppler luminance in obstetrics. Donald School J Ultrasound Obstet Gynecol 2019;13(2):69–77. DOI: 10.5005/jp-journals-10009-1588
  3. Hata T, Mori N, AboEllail MAM, et al. Advances in color Doppler in obstetrics. J South Asian Feder Obst Gynae 2019;11(1):1–12. DOI: 10.5005/jp-journals-10006-1641
  4. Hata T, Koyanagi A, Yamanishi T, et al. Superb microvascular imaging with Doppler luminance using 18-MHz probe to visualize fetal intraabdominal blood vessels and organ microvasculature. J Perinat Med 2020;48(2):184–188. DOI: 10.1515/jpm-2019-0411
  5. Hata T, Koyanagi A, Takayoshi R, et al. Fetal peripheral blood vessels and organ microvasculature depicted by SMI and SlowflowHD. Donald School J Ultrasound Obstet Gynecol 2021;15(3):272–281. DOI: 10.5005/jp-journals-10009-1715
  6. Hasegawa J, Suzuki N. SMI for imaging of placental infarction. Placenta 2016;47:96–98. DOI: 10.1016/j.placenta.2016.08.092
  7. Hata T, Kanenishi K, Yamamoto K, et al. Microvascular imaging of thick placenta with fetal growth restriction. Ultrasound Obstet Gynecol 2018;51(6):837–839. DOI: 10.1002/uog.18837
  8. Mack LM, Mastrobattista JM, Gandhi R, et al. Characterization of placental microvasculature using superb microvascular imaging. J Ultrasound Med 2019;38(9):2485–2491. DOI: 10.1002/jum.14919
  9. Hasegawa J, Kurasaki A, Hata T, et al. Sono-histological findings of the placenta accreta spectrum. Ultrasound Obstet Gynecol 2019;54(5):705–707. DOI: 10.1002/uog.20207
  10. Furuya N, Hasegawa J, Homma C, et al. Novel ultrasound assessment of placental pathological function using superb microvascular imaging. J Matern Fetal Neonatal Med 2020;22:1–4. DOI: 10.1080/14767058.2020.1795120.
  11. Furuya N, Hasegawa J, Doi M, et al. Accuracy of prenatal ultrasound in evaluating placental pathology using Superb Microvascular Imaging: a prospective observation study. Ultrasound Med Biol 2022;48(1):27–34. DOI: 10.1016/j.ultrasmedbio.2021.09.002
  12. Hata T, Mori N, Yamamoto K, et al. SlowflowHD for detection of small fetal peripheral vasculature. Donald School J Ultrasound Obstet Gynecol 2019;13(4):155–158. DOI: 10.5005/jp-journals-10009-1603
  13. Hata T, Koyanagi A, Yamanishi T, et al. Fetal abdominal blood vessels and organ microvasculature detected by SlowflowHD. Ultrasound Obstet Gynecol 2020;56(6):955–957. DOI: 10.1002/uog.22043
  14. Mari G, Uerpairojkit B, Abuhamad AZ, et al. Adrenal artery velocity waveforms in the appropriate and small-for-gestational-age fetus. Ultrasound Obstet Gynecol 1996;8(2):82–86. DOI: 10.1046/j.1469-0705.1996.08020082.x
  15. Okamura K, Shintaku Y, Watanabe T, et al. Femoral artery blood flow monitoring has distinct advantages for examining redistribution of blood flow in fetal acidosis. J Perinat Med 1992;20:215–222. DOI: 10.1515/jpme.1992.20.3.215
  16. Muijsers GJ, Hasaart TH, Ruissen CJ, et al. The response of the umbilical and femoral artery pulsatility indices in fetal sheep to progressively reduced uteroplacental blood flow. J Dev Physiol 1990;13(4):215–221. PMID: 2126020
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.