Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 16 , ISSUE 3 ( July-September, 2022 ) > List of Articles


Are Fetus and Neonate the Same Individual in Terms of Behavior?

Milan Stanojevic

Keywords : Disability evaluation, Fetal movements, Fetal ultrasonography, Neurophysiology

Citation Information : Stanojevic M. Are Fetus and Neonate the Same Individual in Terms of Behavior?. Donald School J Ultrasound Obstet Gynecol 2022; 16 (3):238-249.

DOI: 10.5005/jp-journals-10009-1937

License: CC BY-NC 4.0

Published Online: 18-10-2022

Copyright Statement:  Copyright © 2022; The Author(s).


The aim of the paper is to present continuity of behavior from prenatal to postnatal life. As the development of the brain is a unique and continuing process throughout gestation and after birth, it is expected that there is also the continuity of fetal and neonatal movements, which are the best functional indicator of the developmental processes of the brain. Although we have very powerful imaging and other methods to find out the consequences of brain damage, there is no doubt that clinical methods like history and clinical assessment are of utmost importance. Cranial ultrasound (US) has been used to determine the type and evolution of brain damage. Magnetic resonance imaging (MRI), functional MRI, and near-infrared spectroscopy (NIRS) of the brain have also been used to detect antenatal, perinatal, and neonatal abnormalities and timing of the damage on the basis of standardized assessment of brain maturation. Besides the structure, it is important to investigate the function of the brain, which can be assessed by observation of general movements (GMs). All endogenously generated movement patterns from the unstimulated central nervous system (CNS) could be observed as early as from 7 to 8 weeks of postmenstrual age, with developing a reach repertoire of movements within the next 2 or 3 weeks, continuing to be present for 5–6 months postnatally. Classical postnatal assessment of GMs is well developed and established, while prenatal assessment needs sophisticated real-time four-dimensional ultrasonographic (4D US) or other technology in order to enable a more precise assessment of GMs’ quality in fetuses. It is being speculated that intrauterine detection of neurological disability would improve the outcome. Although many fetal behavioral studies have been conducted, it is still questionable whether the assessment of continuity from fetal to neonatal behavior could improve our ability of early detection of brain pathology. Early detection could possibly raise an opportunity to intervene and even prevent the expected damage. Early intervention programs for preterm infants have a positive influence on cognitive outcomes in short to medium term.

PDF Share
  1. Stanojevic M, Kurjak A. Is fetus and neonate the same individual in terms of behavior? In: Kurjak A. Fetal Brain Function. New Delhi: Jaypee Brothers; 2022. p 95–113.
  2. World Health Organization. Burden of Mental and Behavioral Disorders. World Health Report 2001. [accessed 2021 Jan 13]. Available from:
  3. Ismail FY, Shapiro BK. What are neurodevelopmental disorders? Curr Opin Neurol 2019;32(4):611–616. DOI: 10.1097/WCO.0000000000000710
  4. MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 2015;213(6):779–788. DOI: 10.1016/j.ajog.2015.05.034
  5. Kurjak A, Barisic LS, Stanojevic M, et al. Are we ready to investigate cognitive function of fetal brain? The role of advanced four-dimensional sonography. Donald Sch J Ultrasound Obstet Gynecol 2016;10(2):116–124. DOI: 10.5005/jp-journals-10009-1453
  6. Kurjak A, Antsaklis P, Stanojevic M, et al. Fetal behavior assessed by four-dimensional sonography. Donald Sch J Ultrasound Obstet Gynecol 2017;11(2):146–168. DOI: 10.5005/jp-journals-10009-1516
  7. Neto RM, Kurjak A, Porovic S, et al. Clinical study of fetal neurobehavior by the Kurjak antenatal developmental test. Donald Sch J Ultrasound Obstet Gynecol 2017;11(4):355–361. DOI: 10.5005/jp-journals-10009-1543
  8. Ouyang M, Dubois J, Yu Q, et al. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. Neuroimage 2019;185:836–850. DOI:10.1016/j.neuroimage.2018.04.017
  9. Vasung L, Turk EA, Ferradal SL, et al. Exploring early human brain development with structural and physiological neuroimaging. Neuroimage 2019;187:226–254. DOI: 10.1016/j.neuroimage.2018.07.041
  10. Kurjak A, Stanojevic M, Andonotopo W, et al. Behavioral pattern continuity from prenatal to postnatal life—a study by four-dimensional (4D) ultrasonography. J Perinat Med 2004;32(4):346–353. DOI: 10.1515/JPM.2004.065
  11. Stanojevic M, Perlman M, Andonotopo W, et al. From fetal to neonatal behavioral status. Ultrasound Rev Obstet Gynecol 2004;4(1):459–471. DOI: 10.1080/14722240410001713939
  12. Stanojevic M, Zaputovic S, Bosnjak AP. Continuity between fetal and neonatal neurobehavior. Semin Fetal Neonatal Med 2012;17(6):324–329. DOI: 10.1016/j.siny.2012.06.006
  13. Stanojevic M, Kurjak A, Salihagić-Kadić A, et al. Neurobehavioral continuity from fetus to neonate. J Perinat Med 2011;39(2):171–177. DOI: 10.1515/jpm.2011.004
  14. Stanojevic M. Neonatal aspects: is there continuity? Donald Sch J Ultrasound Obstet Gynecol 2012;6(2):189–196. DOI: 10.5005/jp-journals-10009-1242
  15. Stanojevic M. Antenatal and postnatal assessment of neurobehavior: which one should be used? Donald Sch J Obstet Gynecol 2015;9(1):67–74. DOI: 10.5005/jp-journals-10009-1391
  16. Išasegi IZ, Radoš M, Krsnik Ž, et al. Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall. Brain Struct Funct 2018;223(9):3919–3943. DOI: 10.1007/s00429-018-1721-2
  17. Barth RP, Scarborough A, Lloyd EC, et al. Developmental Status and Needs of the Early Intervention Service for Abused Children. Washington, DC: U.S. Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation; 2008. Available from:
  18. Jöud A, Sehlstedt A, Källén K, et al. Associations between antenatal and perinatal risk factors and cerebral palsy: a Swedish cohort study. BMJ Open 2020;10(8):e038453. DOI: 10.1136/bmjopen-2020-038453
  19. Tatishvili N, Gabunia M, Laliani N, et al. Epidemiology of neurodevelopmental disorders in 2 years old Georgian children. Pilot study—population based prospective study in a randomly chosen sample. Eur J Pediatr Neurol 2010;14(3):247–252. DOI: 10.1016/j.ejpn.2009.07.004
  20. Soleimani F, Vameghi R, Biglarian A, et al. Prevalence of motor developmental disorders in children in Alborz Province, Iran in 2010. Iran Red Crescent Med J 2014;16(12):e16711. DOI: 10.5812/ircmj.16711
  21. McIntyre S. The continuously changing epidemiology of cerebral palsy. Acta Paediatr 2018;107(3):374–375. DOI: 10.1111/apa.14232
  22. Patel DR, Neelakantan M, Pandher K, et al. Cerebral palsy in children: a clinical overview. Transl Pediatr 2020;9(1):S125–S135. DOI: 10.21037/tp.2020.01.01
  23. Himmelmann K, Uvebrant P. The panorama of cerebral palsy in Sweden part XII shows that patterns changed in the birth years 2007–2010. Acta Paediatr 2018;107(3):462–468. DOI: 10.1111/apa.14147
  24. Drummond PM, Colver AF. Analysis by gestational age of cerebral palsy in singleton births in north-east England 1970–94. Paediatr Perinat Epidemiol 2002;16(2):172–180. DOI: 10.1046/j.1365-3016.2002.00408.x
  25. Reid SM, Dagia CD, Ditchfield MR, et al. Population-based studies of brain imaging patterns in cerebral palsy. Dev Med Child Neurol 2014;56(3):222–232. DOI: 10.1111/dmcn.12228
  26. Hemminki K, Li X, Sundquist K, et al. High familial risks for cerebral palsy implicate partial heritable aetiology. Paediatr Perinat Epidemiol 2007;21(3):235–241. DOI: 10.1111/j.1365-3016.2007.00798.x
  27. Jin SC, Lewis SA, Bakhtiari S, et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2020;52(10):1046–1056. DOI: 10.1038/s41588-020-0695-1
  28. Velde AT, Morgan C, Novak I, et al. Early diagnosis and classification of cerebral palsy: an historical perspective and barriers to an early diagnosis. J Clin Med 2019;8(10):1599. DOI:10.3390/jcm8101599
  29. Nelson KB, Ellenberg JH. Neonatal signs as predictors of cerebral palsy. Pediatrics 1979;64(2):225–232. DOI: 10.1542/peds.64.2.225
  30. Hadders-Algra M. Early diagnosis and early intervention in cerebral palsy. Front Neurol 2014;5:185. DOI: 10.3389/fneur.2014.00185
  31. Shepherd E, Salam RA, Middleton P, et al. Neonatal interventions for preventing cerebral palsy: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev 2018;6(6):CD012409. DOI: 10.1002/14651858.CD012409.pub2
  32. Kurjak A, Miskovic B, Andonotopo W, et al. How useful is 3D and 4D in perinatal medicine? J Perinat Med 2007;35(1):10–27. DOI: 10.1515/JPM.2007.002
  33. Gurbuz A, Karateke A, Yilmaz U, et al. The role of perinatal and intrapartum risk factors in the etiology of cerebral palsy in term deliveries in a Turkish population. J Matern Fetal Neonatal Med 2006;19(3):147–155. DOI: 10.1080/14767050500476212
  34. Amiel-Tison C, Gosselin J, Kurjak A. Neurosonography in the second half of fetal life: a neonatologist's point of view. J Perinat Med 2006;34(6):437–446. DOI: 10.1515/JPM.2006.088
  35. Noble Y, Boyd R. Neonatal assessments for the preterm infant up to 4 months corrected age: a systematic review. Dev Med Child Neurol 2012;54(2):129–139. DOI:10.1111/j.1469-8749.2010.03903.x
  36. Simard MN, Lambert J, Lachance C, et al. Interexaminer reliability of Amiel-Tison neurological assessments. Pediatr Neurol 2009;41(5):347–352. DOI: 10.1016/j.pediatrneurol.2009.05.010
  37. Gosselin J, Gahagan S, Amiel-Tison C. The Amiel-Tison neurological assessment at term: conceptual and methodological continuity in the course of follow-up. Ment Retard Dev Disabil Res Rev 2005;11(1):34–51. DOI: 10.1002/mrdd.20049
  38. Groenendaal F, Vries LSD. Fifty years of brain imaging in neonatal encephalopathy following perinatal asphyxia. Pediatr Res 2017;81(1–2):150–155. DOI: 10.1038/pr.2016.195
  39. Lemmon ME, Wagner MW, Bosemani T, et al. Diffusion tensor imaging detects occult cerebellar injury in severe neonatal hypoxic-ischemic encephalopathy. Dev Neurosci 2017;39(1–4):207–214. DOI: 10.1159/000454856
  40. Counsell SJ, Arichi T, Arulkumaran S, et al. Fetal and neonatal neuroimaging. Handb Clin Neurol 2019;162:67–103. DOI: 10.1016/B978-0-444-64029-1.00004-7
  41. Burkitt K, Kang O, Jyoti R, et al. Comparison of cranial ultrasound and MRI for detecting brain injury in extremely preterm infants and correlation with neurological outcomes at 1 and 3 years. Eur J Pediatr 2019;178(7):1053–1061. DOI: 10.1007/s00431-019-03388-7
  42. Annink KV, Vries LSD, Groenendaal F, et al. The development and validation of a cerebral ultrasound scoring system for infants with hypoxic-ischaemic encephalopathy. Pediatr Res 2020;87(1):59–66. DOI: 10.1038/s41390-020-0782-0
  43. Seme-Ciglenecki P. Predictive values of cranial ultrasound and assessment of general movements for neurological development of preterm infants in the Maribor region of Slovenia. Wien Klin Wochenschr 2007;119(15–16):490–496. DOI: 10.1007/s00508-007-0839-7
  44. Ophelders DRMG, Gussenhoven R, Klein L, et al. Preterm brain injury, antenatal triggers, and therapeutics: timing is key. Cells 2020;9(8):1871. DOI: 10.3390/cells9081871
  45. Millar LJ, Shi L, Hoerder-Suabedissen A, et al. Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front Cell Neurosci 2017;11:78. DOI: 10.3389/fncel.2017.00078
  46. Stanojevic M, Hafner T, Kurjak A. Three-dimensional (3D) ultrasound—a useful imaging technique in the assessment of neonatal brain. J Perinat Med 2002;30(1):74–83. DOI: 10.1515/JPM.2002.010
  47. Kurian J, Sotardi S, Liszewski MC, et al. Three-dimensional ultrasound of the neonatal brain: technical approach and spectrum of disease. Pediatr Radiol 2017;47(5):613–627. DOI: 10.1007/s00247-016-3753-1
  48. Wang Y, Chen X, Zhong S, et al. Diagnostic value of two-dimensional plus four-dimensional ultrasonography in fetal craniocerebral anomalies. Iran J Public Health 2019;48(2):323–330. DOI: 10.18502/ijph.v48i2.831
  49. Gotardo JW, Volkmer NFV, Stangler GP, et al. Impact of peri-intraventricular haemorrhage and periventricular leukomalacia in the neurodevelopment of preterms: a systematic review and meta-analysis. PLoS One 2019;14(10):e0223427. DOI: 10.1371/journal.pone.0223427
  50. Brouwer MJ, Kooij BJMV, Haastert ICV, et al. Sequential cranial ultrasound and cerebellar diffusion weighted imaging contribute to the early prognosis of neurodevelopmental outcome in preterm infants. PLoS One 2014;9(10):e109556. DOI: 10.1371/journal.pone.0109556
  51. Einspieler C, Prechtl HFR, Bos AF, et al.. Prechtl's Method on the Qualitative Assessment of General Movements in Preterm, Term and Young Infants. Cambridge: Mac Keith Press; 2004.
  52. Vries JID, Visser GH, Prechtl HF. The emergence of fetal behavior. Qualitative aspects. Early Hum Dev 1982;7(4):301–322. DOI: 10.1016/0378-3782(82)90033-0
  53. Seme-Ciglenečki P. Predictive value of assessment of general movements for neurological development of high-risk preterm infants: comparative study. Croat Med J 2003;44(6):721–727.
  54. Seesahai J, Luther M, Rhoden CC, et al. The general movements assessment in term and late-preterm infants diagnosed with neonatal encephalopathy, as a predictive tool of cerebral palsy by 2 years of age: a scoping review protocol. Syst Rev 2020;9(1):154. DOI: 10.1186/s13643-020-01358-x
  55. Hadders-Algra M. General movements: a window for early identification of children at high risk for developmental disorders. J Pediatr 2004;145(2):S12–S18. DOI: 10.1016/j.jpeds.2004.05.017
  56. Darsaklis V, Snider LM, Majnemer A, et al. Predictive validity of Prechtl's method on the qualitative assessment of general movements: a systematic review of the evidence. Dev Med Child Neurol 2011;53(10):896–906. DOI: 10.1111/j.1469-8749.2011.04017.x
  57. Kwong AKL, Fitzgerald TL, Doyle LW, et al. Predictive validity of spontaneous early infant movement for later cerebral palsy: a systematic review. Dev Med Child Neurol 2018;60(5):480–489. DOI: 10.1111/dmcn.13697
  58. Hadders-Algra M, Philippi H. Predictive validity of the general movements assessment: type of population versus type of assessment. Dev Med Child Neurol 2018;60(11):1186. DOI: 10.1111/dmcn.14000
  59. Pires CDS, Marba STM, Caldas JPDS, et al. Predictive value of the general movements assessment in preterm infants: a meta-analysis. Rev Paul Pediatr 2020;38:e2018286. DOI: 10.1590/1984-0462/2020/38/2018286
  60. Stahlmann N, Härtel C, Knopp A, et al. Predictive value of neurodevelopmental assessment versus evaluation of general movements for motor outcome in preterm infants with birth weights <1500 g. Neuropediatrics 2007;38(2):91–99. DOI: 10.1055/s-2007-984450
  61. Rosenbloom L. What is the role of the general movements assessment in clinical practice? Dev Med Child Neurol 2018;60(1):6. DOI: 10.1111/dmcn.13605
  62. Irshad MT, Nisar MA, Gouverneur P, et al. AI approaches towards Prechtl's assessment of general movements: a systematic literature review. Sensors (Basel) 2020;20(18):5321. DOI: 10.3390/s20185321
  63. Doroniewicz I, Ledwoń DJ, Affanasowicz A, et al. Writhing movement detection in newborns on the second and third day of life using pose-based feature machine learning classification. Sensors (Basel) 2020;20(21):5986. DOI: 10.3390/s20215986
  64. Shepherd E, Salam RA, Middleton P, et al. Antenatal and intrapartum interventions to prevent cerebral palsy: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev 2017;8(8):CD012077. DOI: 10.1002/14651858.CD012077.pub2
  65. Kurjak A, Stanojevic M, Azumendi G, et al. The potential of four-dimensional(4D) ultrasonography in the assessment of fetal awareness. J Perinat Med 2005;33(1):46–53. DOI: 10.1515/JPM.2005.008
  66. AboEllail MAM, Hata T. Fetal face as important indicator of fetal brain function. J Perinat Med 2017;45(6):729–736. DOI: 10.1515/jpm-2016-0377
  67. Kadic AS, Kurjak A. Cognitive functions of the fetus. Ultraschall Med 2018;39(2):181–189. DOI: 10.1055/s-0043-123469
  68. Talic A, Kurjak A, Ahmed B, et al. The potential of 4D sonography in the assessment of fetal behavior in high-risk pregnancies. J Matern Fetal Neonatal Med 2011;24(7):948–954. DOI: 10.3109/14767058.2010.534830
  69. Miskovic B, Vasilj O, Stanojevic M, et al. The comparison of fetal behavior in high risk and normal pregnancies assessed by four dimensional ultrasound. J Matern Fetal Neonatal Med 2010;23(12):1461–1467. DOI: 10.3109/14767051003678200
  70. Hata T, Hanaoka U, AboEllail MAM, et al. Is there a sex difference in fetal behavior? A comparison of the KANET test between male and female fetuses. J Perinat Med 2016;44(5):585–588. DOI: 10.1515/jpm-2015-0387
  71. Hata T, Kanenishi K, AboEllail MAM, et al. Effect of psychotropic drugs on fetal behavior in the third trimester of pregnancy. J Perinat Med 2019;47(2):207–211. DOI: 10.1515/jpm-2018-0114
  72. Gosselin J, Amiel-Tison C. Neurological Assessment from Birth to 6 Years. 2nd ed. Montreal: Editions du CHU Sainte Justine Masson; 2011.
  73. Hu JQ, Zhang YG, Feng W, et al. A pitfall in prenatal ultrasonic detection of submucous cleft palate. Ear Nose Throat J 2020;145561320974867. DOI: 10.1177/0145561320974867
  74. Clark AE, Biffi B, Sivera R, et al. Developing and testing an algorithm for automatic segmentation of the fetal face from three-dimensional ultrasound images. R Soc Open Sci 2020;7(11):201342. DOI: 10.1098/rsos.201342
  75. Pooh RK, Ogura T. Normal and abnormal fetal hand positioning and movement in early pregnancy detected by three- and four-dimensional ultrasound. Ultrasound Rev Obstet Gynecol 2004;4(1):46–51. DOI: 10.1080/14722240410001700249
  76. Katz K, Mashiach R, Meizner I. Normal range of fetal finger movements. J Pediatr Orthop B 2007;16(4):252–255. DOI: 10.1097/BPB.0b013e3280e1295d
  77. Kubo S, Horinouchi T, Kinoshita M, et al. Visual diagnosis in utero: prenatal diagnosis of Treacher-Collins syndrome using a 3D/4D ultrasonography. Taiwan J Obstet Gynecol 2019;58(4):566–569. DOI: 10.1016/j.tjog.2019.05.024
  78. Ouyang YS, Zhang YX, Meng H, et al. Adducted thumb as an isolated morphologic finding: an early sonographic sign of impaired neurodevelopment: a STROBE compliant study. Medicine (Baltimore) 2018;97(38):e12437. DOI: 10.1097/MD.0000000000012437
  79. AboEllail MAM, Kanenishi K, Mori N, et al. Ultrasound study of fetal movements in singleton and twin pregnancies at 12–19 weeks. J Perinat Med 2018;46(8):832–838. DOI: 10.1515/jpm-2017-0158
  80. Sekulic SR, Lukac DD, Naumovic NM. The fetus cannot exercise like an astronaut: gravity loading is necessary for the physiological development during second half of pregnancy. Med Hypotheses 2005;64(2):221–228. DOI: 10.1016/j.mehy.2004.08.012
  81. Meigal AY. Synergistic action of gravity and temperature on the motor system within the lifespan: a “baby astronaut” hypothesis. Med Hypotheses 2013;80(3):275–283. DOI: 10.1016/j.mehy.2012.12.004
  82. Mellor DJ. Preparing for life after birth: introducing the concepts of intrauterine and extrauterine sensory entrainment in mammalian young. Animals (Basel) 2019;9(10):826. DOI: 10.3390/ani9100826
  83. Spittle A, Orton J, Anderson PJ, et al. Early developmental intervention programs provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev 2015;2015(11):CD005495. DOI: 10.1002/14651858.CD005495.pub4
  84. Wolf HT, Huusom LD, Henriksen TB, et al. Magnesium sulphate for fetal neuroprotection at imminent risk for preterm delivery: a systematic review with meta-analysis and trial sequential analysis. BJOG 2020;127(10):1180–1188. DOI: 10.1111/1471-0528.16238
  85. Shulkin M, Pimpin L, Bellinger D, et al. n-3 fatty acid supplementation in mothers, preterm infants, and term infants and childhood psychomotor and visual development: a systematic review and meta-analysis. J Nutr 2018;148(3):409–418. DOI: 10.1093/jn/nxx031
  86. Gawlik NR, Anderson AJ, Makrides M, et al. The influence of DHA on language development: a review of randomized controlled trials of DHA supplementation in pregnancy, the neonatal period, and infancy. Nutrients 2020;12(10):3106. DOI: 10.3390/nu12103106
  87. Dhobale M, Joshi S. Altered maternal micronutrients (folic acid, vitamin B(12)) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy. J Matern Fetal Neonatal Med 2012;25(4):317–323. DOI: 10.3109/14767058.2011.579209
  88. Stanojević M, Antsaklis P, Panchal S, et al. A critical appraisal of Kurjak antenatal neurodevelopmental test: five years of wide clinical use. Donald Sch J Ultrasound Obstet Gynecol 2020;14(4):304–310. DOI: 10.5005/jp-journals-10009-1669
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.