Citation Information :
Pooh RK, Machida M, Matsuzawa N. Fetal Brain Structure and CNS Anomalies. Donald School J Ultrasound Obstet Gynecol 2022; 16 (1):31-52.
As the brain is an organ that must be understood as a three-dimensional (3D) structure, and because the fetal skull ossifies in late pregnancy, it is difficult to depict detailed structures in the brain using conventional horizontal cross-sectional images captured by transabdominal ultrasound. However, there are large spaces such as anterior/posterior fontanels and sagittal sutures in the fetal skull. By using these spaces as a window for ultrasound, it becomes easier to observe the brain structure. Transvaginal fetal 3D neurosonography and transvaginal ultrasound have made it possible to observe congenital brain structural abnormalities and cortical dysgenesis in more detail. Transvaginal 3D ultrasound imaging has been reported to be effective in the evaluation of fetal brain structure. Images of normal brain development, intracerebral vascular architecture, brain malformations, brain disorders such as intracerebral hemorrhage and stroke, and abnormalities in cortical development have gradually revealed the previously unknown development and pathology of the fetal brain. Fetal 3D neurosonography provides information on the orientation of the fetal brain, brain development during pregnancy, the exact location of brain lesions, and the inner structure of the lesions. Detailed neuroimaging is now available for diagnosis of the central nervous system, and genetic tests such as chromosomal microarrays, exome sequencing, and genome sequencing add information on genetic causative factors. The combination of detailed neurosonography and molecular genetics has established a new interdisciplinary field of fetal neurology called “neurosonogenetics,” which will enable accurate perinatal management and care in the future.
Timor-Tritsch IE, Monteagudo A. Tansvaginal fetal neurosonography: standardization of the planes and sections by anatomic landmarks. UOG 1996;8(1):42–47. DOI: 10.1046/j.1469-0705.1996.08010042.x
Timor-Tritsch IE, Monteagudo A, Mayberry P. Three-dimensional ultrasound evaluation of the fetal brain: the three horn view. Ultrasound Obstet Gynecol 2000;16(4):302–306. DOI: 10.1046/j.1469-0705.2000.00177.x
Pooh RK. Contribution of transvaginal high-resolution ultrasound in fetal neurology. Donald Sch J Ultrasound Obstet Gynecol 2011:5(2):93–99. DOI: 10.5005/jp-journals-10009-1183
Pooh RK. Recent fetal neurology: from neurosonography to neurosonogenetics. Donald Sch J Ultrasound Obs Gynecol. 2021;15(3):229–239. DOI: 10.5005/jp-journals-10009-1718
Monteagudo A, Timor-Tritsch IE, Mayberry P. Three-dimensional transvaginal neurosonography of the fetal brain: “navigating” in the volume scan. Ultrasound Obstet Gynecol 2000;16(4):307–313. DOI: 10.1046/j.1469-0705.2000.00264.x
Pooh RK, Kurjak A. 3D and 4D sonography and magnetic resonance in the assessment of normal and abnormal CNS development: alternative or complementary. J Perinat Med 2011;39(1):3–13. DOI: 10.1515/JPM.2010.118
Pooh RK. Neuroimaging Published online 2012:45–53.
Pooh RK, Machida M, Nakamura T, et al. Increased Sylvian fissure angle as early sonographic sign of malformation of cortical development. Ultrasound Obstet Gynecol 2019;54(2):199–206. DOI: 10.1002/uog.20171
Poon LC, Sahota DS, Chaemsaithong P, et al. Transvaginal three-dimensional ultrasound assessment of Sylvian fissures at 18–30 weeks’ gestation. Ultrasound Obstet Gynecol 2019;54(2):190–198. DOI: 10.1002/uog.20172
Pooh RK, Kurjak A. Three-dimensional ultrasound in detection of fetal anomalies. Donald Sch J Ultrasound Obstet Gynecol 2016;10(3):214–234. DOI: 10.5005/jp-journals-10009-1471
Pooh RK. Three-dimensional evaluation of the fetal brain. Donald Sch J Ultrasound Obstet Gynecol 2017;11(4):268–275. DOI: 10.5005/jp-journals-10009-1532
Pooh RK. 13-week pulmonary sonoangiogram by 3D HDlive flow. Donald Sch J Ultrasound Obstet Gynecol 2015;9(4):355–356. DOI: 10.5005/jp-journals-10009-1421
Pooh RK. Sonoembryology by 3D HDlive silhouette ultrasound – what is added by the “see-through fashion”? J Perinat Med 2016;44(2):1. DOI: 10.1515/jpm-2016
Pooh RK. ‘See-through fashion’ in prenatal diagnostic imaging. Donald Sch J Ultrasound Obstet Gynecol 2015;9(2):111. DOI: 10.5005/jp-journals-10009-1397
Pooh RK. Fetal central nervous system: new insights with ultrasound. Donald School Textbook of Ultrasound in Obstetrics & Gynecology 2018. DOI: 10.5005/jp/books/13058_18
Pooh RK. Recent advances in 3D ultrasound, silhouette ultrasound, and sonoangiogram in fetal neurology. Donald Sch J Ultrasound Obstet Gynecol 2016;10(2):193–200. DOI: 10.5005/jp-journals-10009-1468
Pooh RK, Aono T. Transvaginal power doppler angiography of the fetal brain. Ultrasound Obstet Gynecol 1996;8(6):417–421. DOI: 10.1046/j.1469-0705.1997.08060417.x
Pooh RK. The role of issmaging detection of congenital defects in the era of PGT-A and NIPT. J Perinat Med 2019;47(eA):92. DOI: 10.1515/jpm-2019-2501
Pooh RK, Pooh K. Transvaginal 3D and doppler ultrasonography of the fetal brain. Semin Perinatol 2001;25(1):38–43. DOI: 10.1053/sper.2001.22895
Pooh RK. Twenty-week brain vascularity by transvaginal 3D HDlive flow. Donald Sch J Ultrasound Obstet Gynecol 2016;10(3):203–204. DOI: 10.5005/jp-journals-10009-1469
Copp AJ, Greene NDE. Genetics and development of neural tube defects. J Pathol 2010;220(2):217–230. DOI: 10.1002/path.2643
Greene NDE, Copp AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 2009;29(4):303–311. DOI: 10.1002/pd.2206
Rolo A, Galea GL, Savery D, et al. Novel mouse model of encephalocele: post-neurulation origin and relationship to open neural tube defects. Dis Model Mech 2019;12(11):dmm040683. DOI: 10.1242/dmm.040683
Cohen MM. Perspectives on holoprosencephaly: part I. Epidemiology, genetics, and syndromology. Teratology 1989;40(3):211–235. DOI: 10.1002/tera.1420400304
Matsunaga E, Shiota K. Holoprosencephaly in human embryos: epidemiologic studies of 150 cases. Teratology 1977;16(3):261–272. DOI: 10.1002/tera.1420160304
Cohen MM. Holoprosencephaly: clinical, anatomic, and molecular dimensions. Birth Defects Res A Clin Mol Teratol 2006;76(9):658–673. DOI: 10.1002/bdra.20295
Roessler E, Muenke M. The molecular genetics of holoprosencephaly. Am J Med Genet 2010;154C(1):52–61. DOI: 10.1002/ajmg.c.30236
Robbins DJ, Nybakken KE, Kobayashi R, et al. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 1997;90(2):225–234. DOI: 10.1016/S0092-8674(00)80331-1
Robbins DJ, Fei DL, Riobo NA. The hedgehog signal transduction network. Sci Signal 2012;5(246):re6. DOI: 10.1126/scisignal.2002906
Blaas HGK. Holoprosencephaly. In: Obstetric Imaging: Fetal Diagnosis and Care, 2nd Edition.; 2017. DOI: 10.1016/B978-0-323-44548-1.00039-5
Edwards TJ, Sherr EH, Barkovich AJ, et al. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain 2014;137(Pt 6):1579–1613. DOI: 10.1093/brain/awt358
O'Leary DDM, Chou SJ, Sahara S. Area patterning of the mammalian cortex. Neuron 2007;56(2):252–269. DOI: 10.1016/j.neuron.2007.10.010
Hoerder-Suabedissen A, Hayashi S, Upton L, et al. Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cereb Cortex 2018;28(5):1882-1897. DOI: 10.1093/cercor/bhy036
Puthuran MJ, Rowland-Hill CA, Simpson J, et al. Chromosome 1q42 deletion and agenesis of the corpus callosum. Am J Med Genet 2005;138(1):68–69. DOI: 10.1002/ajmg.a.30888
Filges I, Röthlisberger B, Boesch N, et al. Interstitial deletion 1q42 in a patient with agenesis of corpus callosum: phenotype-genotype comparison to the 1q41q42 microdeletion suggests a contiguous 1q4 syndrome. Am J Med Gene 2010;152A(4):987–993. DOI: 10.1002/ajmg.a.33330
Righini A, Ciosci R, Selicorni A, et al. Brain magnetic resonance imaging in Wolf-Hirschhorn syndrome. Neuropediatrics 2007;38(1):25–28. DOI: 10.1055/s-2007-981685
O'Driscoll MC, Black GC, Clayton-Smith J, et al. Identification of genomic loci contributing to agenesis of the corpus callosum. Am J Med Genet A 2010;152A(9):2145–2159. DOI: 10.1002/ajmg.a.33558
Heide S, Keren B, Billette de Villemeur T, et al. Copy number variations found in patients with a corpus callosum abnormality and intellectual disability. J Pediatr 2017;185:160–166.e1. DOI: 10.1016/j.jpeds.2017.02.023
Schell-Apacik CC, Wagner K, Bihler M, et al. Agenesis and dysgenesis of the corpus callosum: clinical, genetic and neuroimaging findings in a series of 41 patients. Am J Med Genet 2008;146A(19):2501–2511. DOI: 10.1002/ajmg.a.32476
Chen CP, Chang TY, Guo WY, et al. Chromosome 17p13.3 deletion syndrome: ACGH characterization, prenatal findings and diagnosis, and literature review. Gene 2013;532(1):152–159. DOI: 10.1016/j.gene.2013.09.044
Chen CP, Chien SC. Prenatal sonographic features of Miller-Dieker syndrome. J Med Ultrasound 2010;18(4):147–152. DOI: 10.1016/j.jmu.2010.11.002
Kitamura K, Yanazawa M, Sugiyama N, et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 2002;32(3):359–369. DOI: 10.1038/ng1009
Kato M, Das S, Petras K, et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 2004;23(2):147–159. DOI: 10.1002/humu.10310
Dobyns WB, Berry-Kravis E, Havernick NJ, et al. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia. Am J Med Genet 1999; DOI: 10.1002/(SICI)1096-8628(19991008)86:4<331::AID-AJMG7>3.0.CO;2-P
Bonneau D, Toutain A, Laquerrière A, et al. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings. Ann Neurol 2002;51(3):340–349. DOI: 10.1002/ana.10119
Fransen E, Vits L, Van Camp G, et al. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule. Am J Med Genet 1996;64(1):73–77. DOI: 10.1002/(SICI)1096-8628(19960712)64:1<73::AID-AJMG11>3.0.CO;2-P
Aicardi J. Aicardi syndrome. Brain Dev 2005. DOI: 10.1016/j.braindev.2003.11.011
Lund C, Bjørnvold M, Tuft M, et al. Aicardi syndrome: an epidemiologic and clinical study in Norway. Pediatr Neurol 2015;52(2):182–6.e3. DOI: 10.1016/j.pediatrneurol.2014.10.022
Parrini E, Conti V, Dobyns WB, et al. Genetic basis of brain malformations. Mol Syndromol 2016;7(4):220–233. DOI: 10.1159/000448639
Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 2014;13(7):710–726. DOI: 10.1016/S1474-4422(14)70040-7
Desikan RS, Barkovich AJ. Malformations of cortical development. Ann Neurol 2016;80(6):797–810. DOI: 10.1002/ana.24793
Barkovich J. Complication begets clarification in classification. Brain 2013;136(2):368–370. DOI: 10.1093/brain/awt001
Severino M, Geraldo AF, Utz N, et al. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020;143(10):2874–2894. DOI: 10.1093/brain/awaa174
Gilmore EC, Walsh CA. Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip Rev Dev Biol 2013;2(4):461–478. DOI: 10.1002/wdev.89
Yu TW, Mochida GH, Tischfield DJ, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 2010;42(11):1015–1020. DOI: 10.1038/ng.683
Jackson AP, Eastwood H, Bell SM, et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 2002;71(1):136–142. DOI: 10.1086/341283
Nicholas AK, Khurshid M, Désir J, et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet 2010;42(11):1010–1014. DOI: 10.1038/ng.682
Trimborn M, Bell SM, Felix C, et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet 2004;75(2):261–266. DOI: 10.1086/422855
Brunk K, Vernay B, Griffith E, et al. Microcephalin coordinates mitosis in the syncytial Drosophila embryo. J Cell Sci 2007;120(Pt 20):3578–3588. DOI: 10.1242/jcs.014290
Bond J, Roberts E, Mochida GH, et al. ASPM is a major determinant of cerebral cortical size. Nat Genet 2002;32(2):316–320. DOI: 10.1038/ng995
Bond J, Roberts E, Springell K, et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 2005;37(4):353–355. DOI: 10.1038/ng1539
Kumar A, Girimaji SC, Duvvari MR, et al. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am J Hum Genet 2008;84(2):286–290. DOI: 10.1016/j.ajhg.2009.01.017
Bilgüvar K, Öztürk AK, Louvi A, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 2010;467(7312):207–210. DOI: 10.1038/nature09327
Kaya B, Ali Kemal O, Angeliki L, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 2011. DOI: 10.1038/nature09327
Guernsey DL, Jiang H, Hussin J, et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am J Hum Genet 2010. DOI: 10.1016/j.ajhg.2010.06.003
Toi A, Lister WS, Fong KW. How early are fetal cerebral sulci visible at prenatal ultrasound and what is the normal pattern of early fetal sulcal development?. Ultrasound Obstet Gynecol 2004;24(7):706–715. DOI: 10.1002/uog.1802
Namburete AI, Stebbing RV, Kemp B, et al. Learning-based prediction of gestational age from ultrasound images of the fetal brain. Med Image Anal 2015;21(1):72–86. DOI: 10.1016/j.media.2014.12.006
Chen X, Li SL, Luo GY, et al. Ultrasonographic characteristics of cortical sulcus development in the human fetus between 18 and 41 weeks of gestation. Chin Med J (Engl) 2017;130(8):920–928. DOI: 10.4103/0366-6999.204114
Di Donato N, Chiari S, Mirzaa GM, et al. Lissencephaly: expanded imaging and clinical classification. Am J Med Genet 2017;173(6):1473–1488. DOI: 10.1002/ajmg.a.38245
McGahan JP, Grix A, Gerscovich EO. Prenatal diagnosis of lissencephaly: Miller-Dieker syndrome. J Clin Ultrasound 1994. DOI: 10.1002/jcu.1870220908
Greco P, Resta M, Vimercati A, et al. Antenatal diagnosis of isolated lissencephaly by ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol 1998;12(4):276–279. DOI: 10.1046/j.1469-0705.1998.12040276.x
Kojima K, Suzuki Y, Seki K, et al. Prenatal diagnosis of lissencephaly (type II) by ultrasound and fast magnetic resonance imaging. Fetal Diagn Ther 2002;17(1):34–36. DOI: 10.1159/000048003
Fong KW, Ghai S, Toi A, et al. Prenatal ultrasound findings of lissencephaly associated with Miller-Dieker syndrome and comparison with pre-and postnatal magnetic resonance imaging. Ultrasound Obstet Gynecol 2004;24(7):716–723. DOI: 10.1002/uog.1777
Gha S, Fong KW, Toi A, et al. Prenatal US and MR imaging findings of lissencephaly: review of fetal cerebral sulcal development. Radiographics 2006;26(2):389–405. DOI: 10.1148/rg.262055059
Yoshida A, Kobayashi K, Manya H, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 2001;1(5):717–724. DOI: 10.1016/S1534-5807(01)00070-3
Hehr U, Uyanik G, Gross C, et al. Novel POMGnT1 mutations define broader phenotypic spectrum of muscle-eye-brain disease. Neurogenetics 2007;8(4):279–288. DOI: 10.1007/s10048-007-0096-y
Godfrey C, Clement E, Mein R, et al. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007;130(Pt 10):2725–2735. DOI: 10.1093/brain/awm212
Kobayashi K, Nakahori Y, Miyake M, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 1998;394(6691):388–392. DOI: 10.1038/28653
Toda T, Kobayashi K, Kondo-Iida E, et al. The Fukuyama congenital muscular dystrophy story. Neuromuscul Disord 2000;10(3):153–159. DOI: 10.1016/S0960-8966(99)00109-1
Takeda S. Fukutin is required for maintenance of muscle integrity, cortical histiogenesis and normal eye development. Hum Mol Genet 2003;12(12):1449–1459. DOI: 10.1093/hmg/ddg153
Friocourt G, Kanatani S, Tabata H, et al. Cell-autonomous roles of ARX in cell proliferation and neuronal migration during corticogenesis. J Neurosci 2008;28(22): 5794–5805. DOI: 10.1523/JNEUROSCI.1067-08.2008
Friocourt G, Poirier K, Rakić S, et al. The role of ARX in cortical development. Eur J Neurosci 2006;23(4):869–876. DOI: 10.1111/j.1460-9568.2006.04629.x
Sherr EH. The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Opin Pediatr 2003;15(6):567–571. DOI: 10.1097/00008480-200312000-00004
Colasante G, Simonet JC, Calogero R, et al. ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c. Cereb Cortex 2015;25(2):322–335. DOI: 10.1093/cercor/bht222
Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 2013;68:122–135. DOI: 10.1016/j.neuropharm.2012.08.015
Chen Y, Beffert U, Ertunc M, et al. Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 2005;25(36):8209–8216. DOI: 10.1523/JNEUROSCI.1951-05.2005
Kato M. Genotype-phenotype correlation in neuronal migration disorders and cortical dysplasias. Front Neurosci 2015;9:181. DOI: 10.3389/fnins.2015.00181
Fallet-Bianco C, Laquerrière A, Poirier K, et al. Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathol Commun 2014;2:69. DOI: 10.1186/2051-5960-2-69
Laquerriere A, Gonzales M, Saillour Y, et al. De novo TUBB2B mutation causes fetal akinesia deformation sequence with microlissencephaly: An unusual presentation of tubulinopathy. Eur J Med Genet 2016;59(4):249–256. DOI: 10.1016/j.ejmg.2015.12.007
Harding BN, Moccia A, Drunat S, et al. Mutations in citron kinase cause recessive microlissencephaly with multinucleated neurons. Am J Hum Genet 2016;99(2):511–520. DOI: 10.1016/j.ajhg.2016.07.003
Barkovich AJ, Ferriero DM, Barr RM, et al. Microlissencephaly: A heterogeneous malformation of cortical development. Neuropediatrics 1998;29(3):113–119. DOI: 10.1055/s-2007-973545
Poirier K, Martinovic J, Laquerrière A, et al. Rare ACTG1 variants in fetal microlissencephaly. Eur J Med Genet 2015;58(8):416–418. DOI: 10.1016/j.ejmg.2015.06.006
Pooh RK, Machida M, Imoto I, et al. Fetal megalencephaly with cortical dysplasia at 18 gestational weeks related to paternal UPD mosaicism with PTEN mutation. Genes (Basel) 2021;12(3):358. DOI: 10.3390/genes12030358
Manzini MC, Walsh CA. The Genetics of Brain Malformations. The Genetics of Neurodevelopmental Disorders 2015. DOI: 10.1002/9781118524947.ch7
Smigiel R, Cabala M, Jakubiak A, et al. Novel COL4A1 mutation in an infant with severe dysmorphic syndrome with schizencephaly, periventricular calcifications, and cataract resembling congenital infection. Birth Defects Res A Clin Mol Teratol 2016;106(4):304–307. DOI: 10.1002/bdra.23488
Watanabe J, Okamoto K, Ohashi T, et al. Malignant hyperthermia and cerebral venous sinus thrombosis after ventriculoperitoneal shunt in infant with schizencephaly and COL4A1 mutation. World Neurosurg 2019;127:446–450. DOI: 10.1016/j.wneu.2019.04.156
Errata to Intracranial hemorrhage and tortuosity of veins detected on susceptibility-weighted imaging of a child with a type IV collagen α1 mutation and schizencephaly(Singapore Med J Magn Reson Med Sci 14,3 223–226, 2014 10.2463/mrms.2014–0060). 2015. DOI: 10.2463/mrms.2014-0060er
Leventer RJ, Jansen A, Pilz DT, et al. Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain 2010;133(Pt 5):1415–1427. DOI: 10.1093/brain/awq078
Stutterd CA, Leventer RJ. Polymicrogyria: a common and heterogeneous malformation of cortical development. Am J Med Genet Part C Semin Med Genet 2014;166C(2):227–239. DOI: 10.1002/ajmg.c.31399
Salomon LJ, Bernard JP, Ville Y. Reference ranges for fetal ventricular width: a non-normal approach. Ultrasound Obstet Gynecol 2007;30(1):61–66. DOI: 10.1002/uog.4026
Heaphy-Henault KJ, Guimaraes C V., Mehollin-Ray AR, et al. Congenital aqueductal stenosis: findings at fetal MRI that accurately predict a postnatal diagnosis. Am J Neuroradiol 2018;39(5):942–948. DOI: 10.3174/ajnr.A5590
Norton ME, Fox NS, Monteagudo A, et al. Fetal ventriculomegaly. Am J Obstet Gynecol 2020;223(6):B30–B33. DOI: 10.1016/j.ajog.2020.08.182
Huang RN, Chen JY, Pan H, et al. Correlation between mild fetal ventriculomegaly, chromosomal abnormalities, and copy number variations. J Matern Neonatal Med 2020;0(0):1–9. DOI: 10.1080/14767058.2020.1863941
Etchegaray A, Juarez-Peñalva S, Petracchi F, Igarzabal L. Prenatal genetic considerations in congenital ventriculomegaly and hydrocephalus. Child's Nerv Syst 2020;36(8):1645–1660. DOI: 10.1007/s00381-020-04526-5
Putbrese B, Kennedy A. Findings and differential diagnosis of fetal intracranial haemorrhage and fetal ischaemic brain injury: What is the role of fetal MRI?. Br J Radiol 2017;90((1070)). DOI: 10.1259/bjr.20160253
Melchiorre K, Bhide A, Gika AD, et al. Counseling in isolated mild fetal ventriculomegaly. Ultrasound Obstet Gynecol 2009;34(2):212–224. DOI: 10.1002/uog.7307
Fox NS, Monteagudo A, Kuller JA, et al. Mild fetal ventriculomegaly: diagnosis, evaluation, and management. Am J Obstet Gynecol 2018;219(1):B2–B9. DOI: 10.1016/j.ajog.2018.04.039
Cardoza JD, Goldstein RB, Filly RA. Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 1988;169(3):711–714. DOI: doi.org/10.1148/radiology.169.3.3055034
Almog B, Gamzu R, Achiron R, et al. Fetal lateral ventricular width: what should be its upper limit? J Ultrasound Med 2003;22(1):39–43. DOI: 10.7863/jum.2003.22.1.39
Malinger G, Paladini D, Haratz KK, et al. ISUOG practice guidelines (updated): sonographic examination of the fetal central nervous system. Part 1: performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet Gynecol 2020;56(3):476–484. DOI: 10.1002/uog.22145
Cardoza JD, Goldstein RB, Filly RA. Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 1988;169(3):711–714. DOI: 10.1148/radiology.169.3.3055034
Chu N, Zhang Y, Yan Y, et al. Fetal ventriculomegaly: pregnancy outcomes and follow-ups in ten years. Biosci Trends 2016;10(2):125–132. DOI: 10.5582/bst.2016.01046
Pagani G, Thilaganathan B, Prefumo F. Neurodevelopmental outcome in isolated mild fetal ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2014;44(3):254–260. DOI: 10.1002/uog.13364
Scelsa B, Rustico M, Righini A, et al. Mild ventriculomegaly from fetal consultation to neurodevelopmental assessment: a single center experience and review of the literature. Eur J Paediatr Neurol 2018;22(6):919–928. DOI: 10.1016/j.ejpn.2018.04.001
Carta S, Kealin Agten A, Belcaro C, et al. Outcome of fetuses with prenatal diagnosis of isolated severe bilateral ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2018;52(2):165–173. DOI: 10.1002/uog.19038
Hannon T, Tennant PWG, Rankin J, Robson SC. Epidemiology, natural history, progression, and postnatal outcome of severe fetal ventriculomegaly. Obstet Gynecol 2012;120(6):1345–1353. DOI: 10.1097/AOG.0b013e3182732b53
Shaheen R, Sebai MA, Patel N, et al. The genetic landscape of familial congenital hydrocephalus. Ann Neurol 2017;81(6):890–897. DOI: 10.1002/ana.24964
Ekici AB, Hilfinger D, Jatzwauk M, et al. Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol 2010;1(3):99–112. DOI: 10.1159/000319859
Al-Dosari MS, Al-Owain M, Tulbah M, et al. Mutation in MPDZ causes severe congenital hydrocephalus. J Med Genet 2013;50(1):54–58. DOI: 10.1136/jmedgenet-2012-101294
Kousi M, Katsanis N. The genetic basis of hydrocephalus. Annu Rev Neurosci 2016;39:409–435. DOI: 10.1146/annurev-neuro-070815-014023
Yamasaki M, Thompson P, Lemmon V. CRASH syndrome: mutations in L1CAM correlate with severity of the disease. Neuropediatrics 1997;28(3):175–178. DOI: 10.1055/s-2007-973696
Itoh K, Fushiki S. The role of L1cam in murine corticogenesis, and the pathogenesis of hydrocephalus. Pathol Int 2015;65(2):58–66. DOI: 10.1111/pin.12245
Takahashi S, Makita Y, Okamoto N, et al. L1CAM mutation in a Japanese family with X-linked hydrocephalus: a study for genetic counseling. Brain Dev 1997;19(8):559–562. DOI: 10.1016/S0387-7604(97)00079-X
Jouet M, Rosenthal A, Armstrong G, et al. X–linked spastic paraplegia (SPG1), MASA syndrome and X–linked hydrocephalus result from mutations in the L1 gene. Nat Genet 1994;(3):402–407. DOI: 10.1038/ng0794-402
Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C, et al. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol 2013;126(3):427–442. DOI: 10.1007/s00401-013-1146-1
Rachel RA, Yamamoto EA, Dewanjee MK, et al. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum Mol Genet 2015;24(13):3775–3791. DOI: 10.1093/hmg/ddv123
Iannicelli M, Brancati F, Mougou-Zerelli S, et al. Novel TMEM67 mutations and genotype-phenotype correlates in meckelin-related ciliopathies. Hum Mutat 2010;31(5):E1319–1331. DOI: 10.1002/humu.21239
Abdelhamed ZA, Natarajan S, Wheway G, et al. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway. DMM Dis Model Mech 2015;8(6):527–541. DOI: 10.1242/dmm.019083
Leightner AC, Hommerding CJ, Peng Y, et al. The Meckel syndrome protein meckelin (TMEM67) is a key regulator of cilia function but is not required for tissue planar polarity. Hum Mol Genet 2013;22(10):2024–2040. DOI: 10.1093/hmg/ddt054
Xiao D, Lv C, Zhang Z, et al. Novel CC2D2A compound heterozygous mutations cause Joubert syndrome. Mol Med Rep 2017;15(1):305–308. DOI: 10.3892/mmr.2016.6007
Johnson K, Bertoli M, Phillips L, et al. Detection of variants in dystroglycanopathy-associated genes through the application of targeted whole-exome sequencing analysis to a large cohort of patients with unexplained limb-girdle muscle weakness. Skelet Muscle 2018;8(1):1–12. DOI: 10.1186/s13395-018-0170-1
Mirzaa GM, Rivière JB, Dobyns WB. Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. Am J Med Genet C Semin Med Genet 2013;163C(2):122–130. DOI: 10.1002/ajmg.c.31361
Itoh K, Pooh R, Kanemura Y, et al. Brain malformation with loss of normal FGFR3 expression in thanatophoric dysplasia type I. Neuropathology 2013;33(6):663–666. DOI: 10.1111/neup.12036
Dicuonzo F, Palma M, Fiume M, et al. Cerebrovascular disorders in the prenatal period. J Child Neurol 2008;23(11):1260-1266. DOI: 10.1177/0883073808318054
Elchalal U, Yagel S, Gomori JM, et al. Fetal intracranial hemorrhage (fetal stroke): does grade matter? Ultrasound Obstet Gynecol 2005;26(3):233–243. DOI: 10.1002/uog.1969
Huang YF, Chen WC, Tseng JJ, et al. Fetal intracranial hemorrhage (fetal stroke): report of four antenatally diagnosed cases and review of the literature. Taiwan J Obstet Gyneco 2006;45(2):135–141. DOI: 10.1016/S1028-4559(09)60211-4
Kutuk MS, Yikilmaz A, Ozgun MT, et al. Prenatal diagnosis and postnatal outcome of fetal intracranial hemorrhage. Child's Nerv Syst 014;30(3):411–418. DOI: 10.1007/s00381-013-2243-0
Sims ME, Turkel SB, Halterman G, et al. Brain injury and intrauterine death. Am J Obstet Gynecol 1985;151(6):721–723. DOI: 10.1016/0002-9378(85)90503-4
Shannon P, Hum C, Parks T, et al. Brain and placental pathology in fetal COL4A1 related disease. Pediatr Dev Pathol 2021;24(3):175–186. DOI: 10.1177/1093526620984083
Itai T, Miyatake S, Taguri M, et al. Prenatal clinical manifestations in individuals with COL4A1/2 variants. Neurogenetics 2020;0:1–9. DOI: 10.1136/individuals
Nakamura Y, Okanishi T, Yamada H, et al. Progressive cerebral atrophies in three children with COL4A1 mutations. Brain Dev 2021;43(10):1033–1038. DOI: 10.1016/j.braindev.2021.06.008
Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92(4):529–534. DOI: 10.1016/S0022-3476(78)80282-0