Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 15 , ISSUE 4 ( October-December, 2021 ) > List of Articles

REVIEW ARTICLE

Best Practices in the Analysis of Ultrasonographic Research Data: Ancora Imparo

Zuber D Mulla

Keywords : Collider-stratification bias, Confounding, Directed acyclic graphs, Generalized linear models, Longitudinal data analysis, Overadjustment bias, Quantile regression, Ultrasound, Women's health

Citation Information : Mulla ZD. Best Practices in the Analysis of Ultrasonographic Research Data: Ancora Imparo. Donald School J Ultrasound Obstet Gynecol 2021; 15 (4):340-346.

DOI: 10.5005/jp-journals-10009-1800

License: CC BY-NC 4.0

Published Online: 31-12-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim: To briefly review several regression models and epidemiological research strategies that are of interest to women healthcare professionals who are engaged in scholarship involving data from ultrasound imaging studies. Background: Advances in statistical methods in epidemiology in the past two decades can aid clinician investigators. However, these recent developments in research methods may not be well-known outside the disciplines of biostatistics and epidemiology. Review results: Several types of regression models are discussed including log-binomial regression and quantile regression. Modern methods for the analysis of repeated measures data including generalized estimating equations are reviewed. Finally, the utility of directed acyclic graphs (DAGs), a type of causal diagram, is introduced. Directed acyclic graphs are useful in identifying confounders and avoiding a variety of biases such as overadjustment bias and collider-stratification bias. Conclusion: Data arising from ultrasound imaging studies provide a wealth of scholarly opportunities for clinicians. The application of sound, modern statistical techniques will ensure the design and conduct of high-quality research investigations. Clinical significance: Physicians using ultrasound may encounter variables with a skewed distribution such as nuchal translucency or a dataset in which the dependent variable, such as an umbilical artery Doppler index, is measured multiple times. Special methods are required to analyze such datasets properly. Clinician researchers, especially early-career faculty, should consider collaborating with biostatisticians and epidemiologists.


HTML PDF Share
  1. College of Human Sciences, Auburn University. Available from: https://wp.auburn.edu/italynew/2018/ancora-imparo/. Accessed May 12, 2021.
  2. Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis, 2nd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2011.
  3. Allison PD. Logistic Regression Using the SAS® System: Theory and Application. Cary, North Carolina: SAS Institute, Inc.; 1999.
  4. Hosmer DW, Lemeshow S. Applied Logistic Regression, 2nd ed. New York: John Wiley & Sons, Inc.; 2000.
  5. Arya S, Mulla ZD, Nguyen TN, et al. Role of three-dimensional pelvic ultrasound in the assessment of risk factors for intrauterine device misplacement and dislocation. Donald Sch J Ultrasound Obstet Gynecol 2019;13(3):103–109. DOI: 10.5005/jp-journals-10009-1598
  6. Balise RR. Logit plot macro (for SAS). Available from: https://web.stanford.edu/~kcobb/courses/hrp261. Accessed March 23, 2018.
  7. Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences. Am J Epidemiol 2005;162(3):199–200. DOI: 10.1016/s1047-2797(01)00278-2
  8. Robbins AS, Chao SY, Fonseca VP. What's the relative risk? A method to directly estimate risk ratios in cohort studies of common outcomes. Ann Epidemiol 2002;12(7):452–454. DOI: 10.1016/s1047-2797(01)00278-2
  9. Fernandez NP, Mulla ZD. Avoiding sparse data bias: an example from gynecologic oncology. J Registry Manag 2012;39(4):167–71.
  10. Coelho Neto MA, Ludwin A, Borrell A, et al. Counting ovarian antral follicles by ultrasound: a practical guide. Ultrasound Obstet Gynecol 2018;51(1):10–20. DOI: 10.1002/uog.18945
  11. Lee AH, Gracey M, Wang K, et al. A robustified modeling approach to analyze pediatric length of stay. Ann Epidemiol 2005;15(9):673–677. DOI: 10.1016/j.annepidem.2004.10.001
  12. Fox J. Chapter 15. Generalized linear models. In: Applied Regression Analysis and Generalized Linear Models, 2nd ed. Los Angeles, California: Sage Publications; 2008. pp. 379–424.
  13. Rothman KJ. Epidemiology: An Introduction. New York: Oxford University Press; 2002.
  14. Despa S. Cornell University, Cornell Statistical Consulting Unit. StatNews #70: Quantile Regression. November 2007, Updated 2012. Available at https://www.cscu.cornell.edu/news/statnews/stnews70.pdf. Accessed May 7, 2019.
  15. Chen C. Paper 213-30. An Introduction to Quantile Regression and the QUANTREG Procedure. Available at: https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/213-30.pdf. Accessed May 7, 2019.
  16. Vale SH, Huttly WJ, Wald NJ. Antenatal screening for Down's syndrome: revised nuchal translucency upper truncation limit due to improved precision of measurement. J Med Screen 2021; 28(2):88–92. DOI: 10.1177/0969141320937321
  17. SAS Institute, Inc. The QUANTREG Procedure. SAS/STAT® 9.3 User's Guide. Available at https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_qreg_sect008.htm. Accessed May 12, 2021.
  18. Acharya G, Wilsgaard T, Berntsen GK, et al. Reference ranges for serial measurements of umbilical artery Doppler indices in the second half of pregnancy. Am J Obstet Gynecol 2005;192(3):937–944. DOI: 10.1016/j.ajog.2004.09.019
  19. Hu FB, Goldberg J, Hedeker D, et al. Comparison of population-averaged and subject-specific approaches for analyzing repeated binary outcomes. Am J Epidemiol 1998;147(7):694–703. DOI: 10.1093/oxfordjournals.aje.a009511
  20. Schober P, Vetter TR. Repeated measures designs and analysis of longitudinal data: if at first you do not succeed-try, try again. Anesth Analg 2018;127(2):569–575. DOI: 10.1213/ANE.0000000000003511
  21. Hanley JA, Negassa A, Edwardes MD, et al. Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol 2003;157(4):364–375. DOI: 10.1093/aje/kwf215
  22. Fitzmaurice GM, Ravichandran C. A primer in longitudinal data analysis. Circulation 2008;118(19):2005–2010. DOI: 10.1161/CIRCULATIONAHA.107.714618
  23. Karhausen LR. Causation: the elusive grail of epidemiology. Med Health Care Philos 2000;3(1):59–67. DOI: 10.1023/a:1009970730507
  24. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology 1999;10(1):37–48.
  25. Bandoli G, Palmsten K, Flores KF, et al. Constructing causal diagrams for common perinatal outcomes: benefits, limitations and motivating examples with maternal antidepressant use in pregnancy. Paediatr Perinat Epidemiol 2016;30(5):521–528. DOI: 10.1111/ppe.12302
  26. Mulla ZD, Pathak IS. Sleep apnea and poor COVID-19 outcomes: beware of causal intermediates and colliders. Am J Respir Crit Care Med 2021;203(10):1325–1326. DOI: 10.1164/rccm.202101-0088LE
  27. Luque-Fernandez MA, Schomaker M, Redondo-Sanchez D, et al. Educational note: paradoxical collider effect in the analysis of non-communicable disease epidemiological data: a reproducible illustration and web application. Int J Epidemiol Erratum in: Int J Epidemiol 2019 Apr 1;48(2):640–653. DOI: 10.1093/ije/dyy275
  28. Westreich D, Greenland S. The table 2 fallacy: presenting and interpreting confounder and modifier coefficients. Am J Epidemiol 2013;177(4):292–298. DOI: 10.1093/aje/kws412
  29. Bandoli G, Palmsten K, Chambers CD, et al. Revisiting the Table 2 fallacy: a motivating example examining preeclampsia and preterm birth. Paediatr Perinat Epidemiol 2018;32(4):390–397. DOI: 10.1111/ppe.12474
  30. Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 2009;20(4):488–495. DOI: 10.1097/EDE.0b013e3181a819a1
  31. Waller DK, Shaw GM, Rasmussen SA, et al. Prepregnancy obesity as a risk factor for structural birth defects. Arch Pediatr Adolesc Med 2007;161(8):745–750. DOI: 10.1001/archpedi.161.8.745
  32. Chu SY, Callaghan WM, Kim SY, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 2007;30(8):2070–2076. DOI: 10.2337/dc06-2559a
  33. Ramos-Arroyo MA, Rodriguez-Pinilla E, Cordero JF. Maternal diabetes: the risk for specific birth defects. Eur J Epidemiol 1992;8(4):503–508. DOI: 10.1007/BF00146367
  34. Griffith GJ, Morris TT, Tudball MJ, et al. Collider bias undermines our understanding of COVID-19 disease risk and severity. Nat Commun 2020 11(1):5749. DOI: 10.1038/s41467-020-19478-2
  35. Hernández-Díaz S, Schisterman EF, Hernán MA. The birth weight “paradox” uncovered? Am J Epidemiol 2006;164(11):1115–1120. DOI: 10.1093/aje/kwj275
  36. VanderWeele TJ, Mumford SL, Schisterman EF. Conditioning on intermediates in perinatal epidemiology. Epidemiology Erratum in: Epidemiology 2012;23(1):1–9. DOI: 10.1097/EDE.0b013e31823aca5d
  37. Rothman KJ, Greenland S, Lash T. Berksonian bias. In: Modern Epidemiology, 3rd ed. Philadelphia, Pennsylvania: Lippincott Williams & Wilkins; 2008, pp. 135–136.
  38. Cole SR, Platt RW, Schisterman EF, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol 2010;39(2):417–420. DOI: 10.1093/ije/dyp334
  39. Susser M. A conversation with Mervyn Susser. Interview by Nigel Paneth. Epidemiology 2003;14(6):748–752. DOI: 10.1097/01.ede.0000091648.75674.24
  40. Susser M. Judgement and causal inference: criteria in epidemiologic studies Am J Epidemiol 1977;105(1):1–15. DOI: 10.1093/oxfordjournals.aje.a112349
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.