Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 15 , ISSUE 3 ( July-September, 2021 ) > List of Articles

REVIEW ARTICLE

Recent Topics in Obstetrical Ultrasound in Japan—Fetal Tachyarrhythmia and Bradyarrhythmia

Jun Yoshimatsu

Keywords : Extrasystole, Fetal arrhythmia, Fetal tachyarrhythmias

Citation Information : Yoshimatsu J. Recent Topics in Obstetrical Ultrasound in Japan—Fetal Tachyarrhythmia and Bradyarrhythmia. Donald School J Ultrasound Obstet Gynecol 2021; 15 (3):266-271.

DOI: 10.5005/jp-journals-10009-1712

License: CC BY-NC 4.0

Published Online: 30-09-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Fetal arrhythmia is frequently found in daily clinical practice. Extrasystole is the most common type of fetal arrhythmia, which is mostly benign and transient. Meanwhile, bradyarrhythmia and tachyarrhythmia are problematic as they cause fetal heart failure. Fetal tachyarrhythmias include supraventricular tachycardia (SVT), atrial flutter (AFL), and ventricular tachycardia (VT). Supraventricular tachycardia are the most commonly reported type of fetal tachyarrhythmia whose mechanisms are classified into AV re-entrant tachycardia (AVRT), AV nodal re-entrant tachycardia (AVNRT), and intra-atrial re-entrant tachycardia (IART). Fetal therapy is performed in cases where extending the gestation period is required. For the fetal therapy of SVT, the classification by VA intervals is used. In 2019, a Japanese prospective study has proposed a protocol of fetal therapy for supraventricular tachyarrhythmia. The efficacy of fetal therapy was 90% (n = 44/49) overall. In fetal bradyarrhythmias, a ventricular rate of <55 bpm is defined as a risk for hydrops fetalis. A prospective study of hydroxychloroquine is currently being conducted in Japan as its prophylactic efficacy was found. An accurate diagnosis is needed to provide appropriate treatment. The recent advancement of ultrasound equipment has enabled higher-resolution imaging than conventional equipment with high temporal and spatial resolutions. In our research, a template matching technique is employed to track tissue architecture in which the speckle pattern is moved to the most similar orientation. With this technique, we estimated the timings of the P and R waves. The reproducibility of such detection for fetuses is currently insufficient. There is still room to be improved.


HTML PDF Share
  1. Donofrio MT, Moon-Grady AJ, Hornberger LK, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 2014;27(21):2183–2242. DOI: 10.1161/01.cir.0000437597.44550.5d.
  2. Weber R, Stambach D, Jaeggi E. Diagnosis and management of common fetal arrhythmias. J Saudi Heart Assoc 2011;23(2):61–66. DOI: 10.1016/j.jsha.2011.01.008.
  3. Huhta JC. Fetal congestive heart failure. Semin Fetal Neonatal Med 2005;10(6):542–552. DOI: 10.1016/j.siny.2005.08.005.
  4. Inamura N, Horigome H, Takigiki K, et al. Guidelines for fetal echocardiography. Pediatric Cardiology and Cardiac Surgery. 2nd ed., 2021. vol. 37 pp. 2–9.
  5. Hajdu J, Pete B, Harmath A, et al. Fetal arrhythmias: a clinical review. Donald School J Ultrasound Obstet Gynecol 2009;3(2):25–37. DOI: 10.5005/jp-journals-10009-1012.
  6. Yuan SM. Fetal arrhythmias: surveillance and management. Hellen J Cardiol 2019;60(2):72–81. DOI: 10.1016/j.hjc.2018.12.003.
  7. Jaeggi ET, Carvalho JS, De Groot E, et al. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: results of a nonrandomized multicenter study. Circulation 2011;124(16):1747–1754. DOI: 10.1161/CIRCULATIONAHA.111.026120.
  8. Strasburger JF, Wakai RT. Fetal cardiac arrhythmia detection and in utero therapy. Nat Rev Cardiol 2010;7(5):277–290. DOI: 10.1038/nrcardio.2010.32.
  9. Kleinman CS, Donnerstein RL, Jaffe CC, et al. Fetal echocardiography: a tool for evaluation of in utero cardiac arrhythmias and monitoring of in utero therapy: analysis of 71 patients. Am J Cardiol 1983;5(2):237–243. DOI: 10.1016/s0002-9149(83)80042-3.
  10. Miyoshi T, Maeno Y, Hamasaki T, et al. Antenatal therapy for fetal supraventricular tachyarrhythmias: multicenter trial. J Am Coll Cardiol 2019;74(7):874–885. DOI: 10.1016/j.jacc.2019.06.024.
  11. Miyoshi T, Sakaguchi H, Shiraishi I, et al. Potential utility of pulsed-wave Doppler for prenatal diagnosis of fetal ventricular tachycardia secondary to long QT syndrome. Ultrasound Obstet Gynecol 2018;51(5):696–700. DOI: 10.1002/uog.18819.
  12. Kleinman CS, Copel JA, Weinstein EM, et al. In utero diagnosis and treatment of fetal supraventricular tachycardia. Semin Perinatol 1985;9(2):113–129.
  13. Bergmans MGM, Jonker GJ, Kock HC. Fetal supraventricular tachycardia: review of the literature. Obstet Gynecol Surv 1985;40(2):61–68. DOI: 10.1097/00006254-198502000-00002.
  14. Krapp M, Kohl T, Simpson JM, et al. Review of diagnosis, treatment, and outcome of fetal atrial flutter compared with supraventricular tachycardia. Heart 2003;89(8):913–917. DOI: 10.1136/heart.89.8.913.
  15. Jaeggi E, Fouron JC, Fournier A, et al. Ventriculo-atrial time interval measured on M mode echocardiography: a determining element in diagnosis, treatment, and prognosis of fetal supraventricular tachycardia. Heart 1998;79(6):582–587. DOI: 10.1136/hrt.79.6.582.
  16. Sridharan S, Sullivan I, Tomek V, et al. Flecainide versus digoxin for fetal supraventricular tachycardia: comparison of two drug treatment protocols. Heart Rhythm 2016;13(9):1913–1919. DOI: 10.1016/j.hrthm.2016.03.023.
  17. Malek AS, Elnahrawy A, Anwar H, et al. Automated detection of premature ventricular contraction in ECG signals using enhanced template matching algorithm. Biomed Phys Eng Express 2020;6(1):015024. DOI: 10.1088/2057-1976/ab6995.
  18. Chang YL, Hsieh PC, Chang SD, et al. Perinatal outcome of fetus with isolated congenital second degree atrioventricular block without maternal anti-SSA/Ro-SSB/La antibodies. Eur J Obstet Gynecol Reprod Biol 2005;122(2):167–171. DOI: 10.1016/j.ejogrb.2005.01.013.
  19. Ciardulli A, D’Antonio F, Magro-Malosso ER, et al. Maternal steroid therapy for fetuses with second-degree immune-mediated congenital atrioventricular block: a systematic review and meta-analysis. Acta Obstet Gynecol Scand 2018;97(7):787–794. DOI: 10.1111/aogs.13338.
  20. Izmirly PM, Saxena A, Sahl SK, et al. Assessment of fluorinated steroids to avert progression and mortality in anti-SSA/Ro-associated cardiac injury limited to the fetal conduction system. Ann Rheum Dis 2016;75(6):1161–1165. DOI: 10.1136/annrheumdis-2015-208311.
  21. Cuneo BF, Ambrose SE, Tworetsky WT. Detection and successful treatment of emergent anti-SSA-mediated fetal atrioventricular block. Am J Obstet Gynecol 2016;215(4):527–528. DOI: 10.1016/j.ajog.2016.07.002.
  22. Yagel S, Silverman NH, Gembruch U. Fetal cardiology: embryology, genetics, physiology, echocardiographic evaluation, diagnosis, and perinatal management of cardiac diseases. 3rd ed., CRC Press; 2019. pp. 515–547.
  23. De Carolis S, Garufi C, Garufi E, et al. Autoimmune congenital heart block: a review of biomarkers and management of pregnancy. Front Pediatr 2020;22(8):607515. DOI: 10.3389/fped.2020.607515.
  24. Miyoshi T, Umekawa T, Hosoda H, et al. Plasma natriuretic peptide levels in fetuses with congenital heart defect and/or arrhythmia: a single-center prospective study. Ultrasound Obstet Gynecol 2018;52(5):609–616. DOI: 10.1002/uog.18925.
  25. Miyoshi T, Hosoda H, Nakai M, et al. Maternal biomarkers for fetal heart failure in fetuses with congenital heart defects or arrhythmias. Am J Obstet Gynecol 2019;220(1):104.e1–104.e15. DOI: 10.1016/j.ajog.2018.09.024.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.