Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 15 , ISSUE 3 ( July-September, 2021 ) > List of Articles


Two-dimensional Tracking Technique for Assessment of Fetal Cardiac Function

Sumito Nagasaki, Masahiko Nakata

Keywords : Auto FS, Fetal cardiac function, Strain, Two-dimensional speckle-tracking echocardiography

Citation Information : Nagasaki S, Nakata M. Two-dimensional Tracking Technique for Assessment of Fetal Cardiac Function. Donald School J Ultrasound Obstet Gynecol 2021; 15 (3):254-258.

DOI: 10.5005/jp-journals-10009-1707

License: CC BY-NC 4.0

Published Online: 30-09-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Although various methods have been reported to evaluate fetal cardiac function using ultrasound, two-dimensional speckle-tracking echocardiography (2D-STE), which automatically tracks speckles on B-mode images has the advantage of being angle-independent. Several ultrasound devices are now capable of evaluating fetal cardiac function using 2D-STE, like global longitudinal strain (GLS), wall strain, and fractional area change (FAC). There is also a method called auto fractional shortening (FS) that can automatically calculate the fractional shortening (FS). The most important thing for 2D-STE measurement is to make the B-mode image clear. So, it is important to display the heart as large as possible and to use the highest frame rate possible. There have been many reports of normal and pathological fetuses. However, there are some problems, such as the reference value varies depending on the device or algorithm, and the measurement can only with high-end ultrasound devices, so further development is expected.

  1. Nakata M, Sakuma J, Takano M, et al. Assessment of fetal cardiac function with echocardiography. J Obstet Gynaecol Res 2020;46(1):31–38. DOI: 10.1111/jog.14143.
  2. van Oostrum NHM, de Vet CM, van der Woude DAA, et al. Fetal strain and strain rate during pregnancy measured with speckle tracking echocardiography: a systematic review. Eur J Obstet Gynecol Reprod Biol 2020;250:178–187. DOI: 10.1016/j.ejogrb.2020.04.002.
  3. Meister M, Axt-Fliedner R, Graupner O, et al. Atrial and ventricular deformation analysis in normal fetal hearts using two-dimensional speckle tracking echocardiography. Fetal Diagn Ther 2020;47(9):699–710. DOI: 10.1159/000508881.
  4. Barker PC, Houle H, Li JS, et al. Global longitudinal cardiac strain and strain rate for assessment of fetal cardiac function: novel experience with velocity vector imaging. Echocardiography 2009;26(1):28–36. DOI: 10.1111/j.1540-8175.2008.00761.x.
  5. Ishii T, McElhinney DB, Harrild DM, et al. Circumferential and longitudinal ventricular strain in the normal human fetus. J Am Soc Echocardiogr 2012;25(1):105–111. DOI: 10.1016/j.echo.2011.09.016.
  6. Kapusta L, Mainzer G, Weiner Z, et al. Second trimester ultrasound: reference values for two-dimensional speckle tracking-derived longitudinal strain, strain rate and time to peak deformation of the fetal heart. J Am Soc Echocardiogr 2012;25(12):1333–1341. DOI: 10.1016/j.echo.2012.09.011.
  7. Kapusta L, Mainzer G, Weiner Z, et al. Changes in fetal left and right ventricular strain mechanics during normal pregnancy. J Am Soc Echocardiogr 2013;26(10):1193–1200. DOI: 10.1016/j.echo.2013.06.007.
  8. Matsui H, Germanakis I, Kulinskaya E, et al. Temporal and spatial performance of vector velocity imaging in the human fetal heart. Ultrasound Obstet Gynecol 2011;37(2):150–157. DOI: 10.1002/uog.8815.
  9. Peng QH, Zhou QC, Zeng S, et al. Evaluation of regional left ventricular longitudinal function in 151 normal fetuses using velocity vector imaging. Prenat Diagn 2009;29(12):1149–1155. DOI: 10.1002/pd.2386.
  10. Pu DR, Zhou QC, Zhang M, et al. Assessment of regional right ventricular longitudinal functions in fetus using velocity vector imaging technology. Prenat Diagn 2010;30(11):1057–1063. DOI: 10.1002/pd.2611.
  11. Dahlbäck C, Gudmundsson S. Increased pulsatility in the fetal ductus venosus is not related to altered cardiac strain in high-risk pregnancies. J Matern Fetal Neonatal Med 2016;29(8):1328–1333. DOI: 10.3109/14767058.2015.1047337.
  12. van Oostrum NHM, van der Woude DAA, Clur SB, et al. Right ventricular dysfunction identified by abnormal strain values precedes evident growth restriction in small for gestational age fetuses. Prenat Diagn 2020;40(12):1525–1531. DOI: 10.1002/pd.5805.
  13. Crispi F, Bijnens B, Figueras F, et al. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation 2010;121(22):2427–2436. DOI: 10.1161/CIRCULATIONAHA.110.937995.
  14. van Oostrum NHM, Derks K, van der Woude DAA, et al. Two-dimensional speckle tracking echocardiography in fetal growth restriction: a systematic review. Eur J Obstet Gynecol Reprod Biol 2020;254:87–94. DOI: 10.1016/j.ejogrb.2020.08.052.
  15. Wohlmuth C, Boudreaux D, Moise KJ, et al. Cardiac pathophysiology in twin-twin transfusion syndrome: new insights into its evolution. Ultrasound Obstet Gynecol 2018;51(3):341–348. DOI: 10.1002/uog.17480.
  16. Raboisson MJ, Fouron JC, Lamoureux J, et al. Early intertwin differences in myocardial performance during the twin-to-twin transfusion syndrome. Circulation 2004;110(19):3043–3048. DOI: 10.1161/01.CIR.0000146896.20317.59.
  17. Taylor-Clarke MC, Matsui H, Roughton M, et al. Ventricular strain changes in monochorionic twins with and without twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2013;208(6):462.e1-6. DOI: 10.1016/j.ajog.2013.02.051.
  18. Rychik J, Zeng S, Bebbington M, et al. Speckle tracking-derived myocardial tissue deformation imaging in twin-twin transfusion syndrome: differences in strain and strain rate between donor and recipient twins. Fetal Diagn Ther 2012;32(1-2):131–137. DOI: 10.1159/000335403.
  19. Harbison AL, Pruetz JD, Ma S, et al. Evaluation of cardiac function in the recipient twin in successfully treated twin to twin transfusion syndrome (TTTS) using a novel fetal speckle tracking analysis. Prenat Diagn 2021;41(1):136–144. DOI: 10.1002/pd.5835.
  20. Patey O, Carvalho JS, Thilaganathan B. Perinatal changes in fetal cardiac geometry and function in diabetic pregnancy at term. Ultrasound Obstet Gynecol 2019;54(5):634–642. DOI: 10.1002/uog.20187.
  21. DeKoninck P, D’Hooge J, Van Mieghem T, et al. Speckle tracking echocardiography in fetuses diagnosed with congenital diaphragmatic hernia. Prenat Diagn 2014;34(13):1262–1267. DOI: 10.1002/pd.4461.
  22. Cohen J, Binka E, Woldu K, et al. Myocardial strain abnormalities in fetuses with pulmonary atresia and intact ventricular septum. Ultrasound Obstet Gynecol 2019;53(4):512–519. DOI: 10.1002/uog.19183.
  23. Nagasaki S, Nakata M, Takano M, et al. Feasibility of automated fetal fractional shortening measurement with two-dimensional tracking and construction of a reference range for normal fetuses. J Med Ultrason (2001) 2019;46(4):467–472. DOI: 10.1007/s10396-019-00942-6.
  24. Nagasaki S, Nakata M, Takano M, et al. Measurement of fetal automated fractional shortening using two-dimensional tracking in multiple centers. J Med Ultrason (2001) 2021;48(1):83–90. DOI: 10.1007/s10396-020-01069-9.
  25. DeVore GR, Polanco B, Satou G, et al. Two-dimensional speckle tracking of the fetal heart: a practical step-by-step approach for the fetal sonologist. J Ultrasound Med 2016;35(8):1765–1781. DOI: 10.7863/ultra.15.08060.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.