Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 15 , ISSUE 3 ( July-September, 2021 ) > List of Articles

REVIEW ARTICLE

Recent Topics in Fetal Behavioral Assessment

Kazushige Nakahara, Seiichi Morokuma, Kiyoko Kato

Keywords : Eye movement, Facial expression, Fetal behavior, Mouth movement, Neurodevelopment

Citation Information : Nakahara K, Morokuma S, Kato K. Recent Topics in Fetal Behavioral Assessment. Donald School J Ultrasound Obstet Gynecol 2021; 15 (3):240-244.

DOI: 10.5005/jp-journals-10009-1703

License: CC BY-NC 4.0

Published Online: 30-09-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Many fetal behaviors are thought to indicate neurological development and may be useful for predicting neurodevelopmental outcomes after birth. In the present article, we review recent fetal behavioral studies focused on early spontaneous movements, eye movements (EMs), regular mouthing movements (RMMs), expression, and our own evaluation method of fetal brain dysfunction. Early spontaneous movement is one of the earliest expressions of neural activity. Changes in fetal EMs are thought to reflect the development of fetal sleep, while RMMs may reflect the development of non-rapid EM sleep. Fetal facial expressions, which may reflect higher brain function, can now be observed in more detail using four-dimensional ultrasound. Furthermore, we propose that assessing fetal brain function by combining multiple behavioral indicators may predict long-term neurodevelopmental outcomes after birth.


PDF Share
  1. Nijhuis JG. Fetal behavior. Neurobiol Aging 2003;24:3–8. DOI: 10.1016/s0197-4580(03)00054-x.
  2. Horimoto N, Koyanagi T, Nagata S, et al. Concurrence of mouthing movement and rapid eye movement/non-rapid eye movement phases with advance in gestation of the human fetus. Am J Obstet Gynecol 1989;161(2):344–351. DOI: 10.1016/0002-9378(89)90517-6.
  3. De Vries JIP, Fong BF. Normal fetal motility: an overview. Ultrasound Obstet Gynecol 2006;27(6):701–711. DOI: 10.1002/uog.2740.
  4. Horimoto N, Hepper P, Shahidullah S, et al. Fetal eye movements. Ultrasound Obstet Gynecol 1993;3(5):362–369. DOI: 10.1046/j.1469-0705.1993.03050362.x.
  5. Kurjak A, Miskovic B, Stanojevic M, et al. New scoring system for fetal neurobehavior assessed by three- and four-dimensional sonography. J Perinat Med 2008;36(1):73–81. DOI: 10.1515/JPM.2008.007.
  6. Ohmura Y, Morokuma S, Kato K, et al. Species-specific posture of human foetus in late first trimester. Sci Rep 2018;8(1):1–6. DOI: 10.1038/s41598-017-18384-w.
  7. Kurjak A, Tikvica A, Stanojevic M, et al. The assessment of fetal neurobehavior by three-dimensional and four-dimensional ultrasound. J Matern Neonatal Med 2008;21(10):675–684. DOI: 10.1080/14767050802212166.
  8. de Vries JIP, Visser GHA, Precht HFR. The emergence of fetal behaviour. 1. Qualitative aspect. Early Hum Dev 1982;7(4):301–322. DOI: 10.1016/0378-3782(82)90033-0.
  9. de Vries JIP, Visser GHA, Precht HFR. The emergence of fetal behaviour. III. Individual differences and consistencies. Early Hum Dev 1988;16(1):85–103. DOI: 10.1016/0378-3782(88)90089-8.
  10. de Vries JIP, Visser GHA, Prechtl HFR. The emergence of fetal behaviour. II. Quantitative aspects. Early Hum Dev 1985;12(2):99–120. DOI: 10.1016/0378-3782(85)90174-4.
  11. Sasaki M, Yanagihara T, Naitoh N, et al. Four-dimensional sonographic assessment of inter-twin contact late in the first trimester. Int J Gynecol Obstet 2010;108(2):104–107. DOI: 10.1016/j.ijgo.2009.09.025.
  12. Hata T, Sasaki M, Yanagihara T. Difference in the frequency of types of inter-twin contact at 10–13 weeks’ gestation: preliminary four-dimensional sonographic study. J Matern Neonatal Med 2012;25(3):226–230. DOI: 10.3109/14767058.2011.568551.
  13. AboEllail MAM, Kanenishi K, Mori N, et al. Ultrasound study of fetal movements in singleton and twin pregnancies at 12–19 weeks. J Perinat Med 2018;46(8):832–838. DOI: 10.1515/jpm-2017-0158.
  14. de Elejalde MM, Elejalde BR. Ultrasonographic visualization of the fetal eye. J Craniofac Genet Dev Biol 1985;5(4):319–326.
  15. Inoue M, Koyanagi T, Nakahara H, et al. Functional development of human eye movement in utero assessed quantitatively with real-time ultrasound. Am J Obstet Gynecol 1986;155(1):170–174. DOI: 10.1016/0002-9378(86)90105-5.
  16. Koyanagi T, Horimoto N, Takashima T, et al. Ontogenesis of ultradian rhythm in the human fetus, observed through the alternation of eye movement and no eye movement periods. J Reprod Infant Psychol 1993;11(3):129–134. DOI: 10.1080/02646839308403207.
  17. Timor-Tritsch IE, Dierker LJ, Hertz RH, et al. Studies of antepartum behavioral state in the human fetus at term. Am J Obstet Gynecol 1978;132(5):524–528. DOI: 10.1016/0002-9378(78)90747-0.
  18. Okawa H, Morokuma S, Maehara K, et al. Eye movement activity in normal human fetuses between 24 and 39 weeks of gestation. PLoS One 2017;12(7):1–12. DOI: 10.1371/journal.pone.0178722.
  19. Fukushima K, Morokuma S, Nakano H. Behavioral parameters assessing human fetal development. Ultrasound Rev Obstet Gynecol 2004;4(1):26–36. DOI: 10.3109/14722240410001714802.
  20. Wolfe K, Ralls FM. Rapid eye movement sleep and neuronal development. Curr Opin Pulm Med 2019;25(6):555–560. DOI: 10.1097/MCP.0000000000000622.
  21. Li W, Ma L, Yang G, et al. REM sleep selectively prunes and maintains new synapses in development and learning. Nat Neurosci 2017;20(3):27–43. DOI: 10.1038/nn.4479.
  22. Arditi-Babchuk H, Feldman R, Eidelman AI. Rapid eye movement (REM) in premature neonates and developmental outcome at 6 months. Infant Behav Dev 2009;32(1):27–32. DOI: 10.1016/j.infbeh.2008.09.001.
  23. van Woerden EE, van Geijn HP, Swartjes JM, et al. Fetal heart rhythms during behavioural state 1F. Eur. J Obstet Gynecol Reprod Biol 1988;28(1):29–38. DOI: 10.1016/0028-2243(88)90057-3.
  24. Maehara K, Morokuma S, Nakahara K, et al. A study on the association between eye movements and regular mouthing movements (RMMs) in normal fetuses between 24 to 39 weeks of gestation. PLoS One 2020;15(5):1–9. DOI: 10.1371/journal.pone.0233909.
  25. Ringli M, Huber R. Chapter 5 - Developmental aspects of sleep slow waves: Linking sleep, brain maturation and behavior. In Slow Brain Oscillations of Sleep, Resting State and Vigilance Van Someren EJW, Van Der Werf YD, Roelfsema PR, et al., ed. Elsevier; 2011. 63–82.
  26. Hafström M, Kjellmer I. Non-nutritive sucking in sick preterm infants. Early Hum Dev 2001;63(1):37–52. DOI: 10.1016/s0378-3782(01)00146-3.
  27. AboEllail MAM, Hata T. Fetal face as important indicator of fetal brain function. J Perinat Med 2017;45(6):729–736. DOI: 10.1515/jpm-2016-0377.
  28. Antsaklis P, Kurjak A, Izetbegovic S. Functional test for fetal brain: the role of KANET test. Donald Sch. J Ultrasound Obstet Gynecol 2013;7(4):385–399. DOI: 10.5005/jp-journals-10009-1309.
  29. Stanoevici M. An attempt to standardize Kurjak's antenatal neurodevelopmental test: Osaka consensus statement. Donald School J Ultrasound Obstet Gynecol 2011;5(4).
  30. Abo-Yaqoub S, Kurjak A, Mohammed A-B, et al. The role of 4-D ultrasonography in prenatal assessment of fetal neurobehaviour and prediction of neurological outcome. J Matern Neonatal Med 2012;25(3):231–236. DOI: 10.3109/14767058.2011.568552.
  31. Neto RM. KANET in Brazil: first experience. Donald School J Ultrasound Obstet Gynecol 2015;9(1):1–5. DOI: 10.5005/jp-journals-10009-1384.
  32. Talic A, Kurjak A, Stanojevic M, et al. The assessment of fetal brain function in fetuses with ventrikulomegaly: the role of the KANET test. J Matern Neonatal Med 2012;25(8):1267–1272. DOI: 10.3109/14767058.2011.634463.
  33. Kurjak A, Predojević M, Stanojević M, et al. The use of 4D imaging in the behavioral assessment of high-risk fetuses. Imaging Med 2011;3(5):557–569. DOI: 10.2217/iim.11.39.
  34. Miskovic B, Vasilj O, Stanojevic M, et al. The comparison of fetal behavior in high risk and normal pregnancies assessed by four dimensional ultrasound. J Matern Neonatal Med 2010;23(12):1461–1467. DOI: 10.3109/14767051003678200.
  35. Hata T, Kanenishi K, Mori N, et al. Prediction of postnatal developmental disabilities using the antenatal fetal neurodevelopmental test: KANET assessment. J Perinat Med 2019;47(1):77–81. DOI: 10.1515/jpm-2018-0169.
  36. Horimoto N, Koyanagi T, Maeda H, et al. Can brain impairment be detected by in utero behavioural patterns? Arch Dis Child 1993;69(1 Spec No):3–8. DOI: 10.1136/adc.69.1_spec_no.3.
  37. Morokuma S, Fukushima K, Yumoto Y, et al. Simplified ultrasound screening for fetal brain function based on behavioral pattern. Early Hum Dev 2007;83(3):177–181. DOI: 10.1016/j.earlhumdev.2006.05.012.
  38. Morokuma S, Fukushima K, Otera Y, et al. Ultrasound evaluation of fetal brain dysfunction based on behavioral patterns. Brain Dev 2013;35(1):61–67. DOI: 10.1016/j.braindev.2012.01.007.
  39. Sadovsky E, Ohel G, Havazeleth H, et al. The definition and the significance of decreased fetal movements. Acta Obstet Gynecol Scand 1983;62(5):409–413. DOI: 10.3109/00016348309154211.
  40. Rochard F, Schifrin BS, Goupil F, et al. Nonstressed fetal heart rate monitoring in the antepartum period. Am J Obstet Gynecol 1976;126(6):699–706. DOI: 10.1016/0002-9378(76)90523-8.
  41. Brown R, Patrick J. The nonstress test: how long is enough? Am J Obstet Gynecol 1981;141(6):646–651. DOI: 10.1016/s0002-9378(15)33305-6.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.