Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 15 , ISSUE 2 ( April-June, 2021 ) > List of Articles


Cognitive Functions in Pregnant Women

Natalia Lesiewska, Maciej Bieliński

Keywords : Brain function, Cognitive functions, Depression, Gestational diabetes, Obesity, Preeclampsia, Pregnancy

Citation Information : Lesiewska N, Bieliński M. Cognitive Functions in Pregnant Women. Donald School J Ultrasound Obstet Gynecol 2021; 15 (2):203-214.

DOI: 10.5005/jp-journals-10009-1690

License: CC BY-NC 4.0

Published Online: 02-07-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Aim: This review aims to analyze current evidence about how pregnancy and pathologies which occur during pregnancy may affect the function of a woman\'s brain, and how those changes may influence cognitive functioning. Background: During pregnancy occur adaptive changes in a woman\'s body which are necessary for proper fetal development. Pregnancy also induces structural and functional alterations within the brain. Cognitive functions are the group of mental processes responsible for learning or information processing; hence, their proper function is essential in daily living and achieving set goals. Literature shows evidence of deleterious effects on cognitive functions caused by conditions such as diabetes mellitus, hypertension, obesity, or depression within the group on nonpregnant individuals. There are also studies evaluating cognitive functions in pregnancy complicated with various diseases (including pregnancy-related ones). Review results: Gathered publications show mixed results regarding cognitive functions in pregnancy and diseases associated with pregnancy. Results indicate a poorer function of cognitive domains in pregnant women, in contrast to nonpregnant ones, which may correlate with hormone levels. Regarding hypertensive disorders, data provide evidence of worse cognitive processing and greater risk of dementia in women with preeclampsia. The literature lacks evidence about the influence on cognition in women with gestational diabetes; however, diabetes mellitus show strong correlations with cognitive deterioration putatively associated with glucose metabolism dysfunction. Obese individuals show a decline in many cognitive domains, which may predispose them to further weight gain. Depression is associated with poorer cognitive performance; however, anxiety and depressive states may be responsible for subjective cognitive dysfunction during pregnancy. Conclusion: Research shows mixed results regarding the connection between cognition and both pregnancy-related diseases, which may stem from a lack of properly designed studies. Clinical significance: More research about cognitive functions and pregnancy is needed due to the growing prevalence of the abovementioned diseases and their harmful effect on brain function even long after delivery.

PDF Share
  1. Barba-Müller E, Craddock S, Carmona S, et al. Brain plasticity in pregnancy and the postpartum period: links to maternal caregiving and mental health. Arch Womens Ment Health 2019;22(2):289–299. DOI: 10.1007/s00737-018-0889-z.
  2. Hoekzema E, Barba-Müller E, Pozzobon C, et al. Pregnancy leads to long-lasting changes in human brain structure. Nat Neurosci 2017;20(2):287–296. DOI: 10.1038/nn.4458.
  3. Luo H, Liang X, Cheng Z, et al. Effects of normal pregnancy on maternal EEG, TCD, and cerebral cortical volume. Brain Cogn 2020;140:105526. DOI: 10.1016/j.bandc.2020.105526.
  4. Henderson VW. Progesterone and human cognition. Climacteric 2018;21(4):333–340. DOI: 10.1080/13697137.2018.1476484.
  5. Farrar D, Tuffnell D, Neill J, et al. Assessment of cognitive function across pregnancy using CANTAB: a longitudinal study. Brain Cogn 2014;84(1):76–84. DOI: 10.1016/j.bandc.2013.11.003.
  6. Christensen H, Leach LS, Mackinnon A. Cognition in pregnancy and motherhood: prospective cohort study. Br J Psychiatry 2010;196(2):126–132. DOI: 10.1192/bjp.bp.109.068635.
  7. Henry JF, Sherwin BB. Hormones and cognitive functioning during late pregnancy and postpartum: a longitudinal study. Behav Neurosci 2012;126(1):73–85. DOI: 10.1037/a0025540.
  8. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 2018;39(33):3021–3104. DOI: 10.1093/eurheartj/ehy339.
  9. Ying W, Catov JM, Ouyang P. Hypertensive disorders of pregnancy and future maternal cardiovascular risk AHA. J Am Heart Assoc 2018;7(17):e009382. DOI: 10.1161/JAHA.118.009382.
  10. Brown MA, Magee LA, Kenny LC, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens 2018;3:291–310. DOI: 10.1016/j.preghy.2018.05.004.
  11. Markham K, Funai EF. Pregnancy-related hypertension. In: Creasy RK, Resnik R, Iams JD, et al., ed. Creasy and Resnik's maternal-fetal medicine. 7th ed., Philadephia: Elsevier; 2015. pp 756–pp 781.
  12. Ferrer RL, Sibai BM, Mulrow CD, et al. Management of mild chronic hypertension during pregnancy: a review. Obstet Gynecol 2000;96(5 Pt 2):849–860. DOI: 10.1016/s0029-7844(00)00938-8.
  13. Lin CC, Lindheimer MD, River P, et al. Fetal outcome in hypertensive disorders of pregnancy. Am J Obstet Gynecol 1982;142(3):255–260. DOI: 10.1016/0002-9378(82)90727-x.
  14. Report of the national high blood pressure education program working group on high blood pressure in pregnancy. Am J Obstet Gynecol 2000;183(1):S1–S22. DOI: 10.1067/mob.2000.107928.
  15. Williams D. Long-term complications of preeclampsia. Semin Nephrol 2011;31(1):111–122. DOI: 10.1016/j.semnephrol.2010.10.010.
  16. Bellamy L, Casas J, Hingorani A, et al. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ Br Med J 2007;335(7627):974. DOI: 10.1136/bmj.39335.385301.BE.
  17. ACOG Committee on Obstetric Practice, American College of Obstetricians and Gynecologists. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Int J Gynaecol Obstet 2002;77(1):67–75. DOI: 10.1016/S0020-7292(02)80002-9.
  18. Postma IR, Groen H, Easterling TR, et al. The brain study: cognition, quality of life and social functioning following preeclampsia; an observational study. Pregnancy Hypertens 2013;3(4):227–234. DOI: 10.1016/j.preghy.2013.06.003.
  19. Gaugler-Senden IPM, Duivenvoorden H, Filius A, et al. Maternal psychosocial outcome after early onset preeclampsia and preterm birth. J Matern – Fetal Neonatal Med 2012;25(3):272–276. DOI: 10.3109/14767058.2011.573829.
  20. Caropreso L, de Azevedo Cardoso T, Eltayebani M, et al. Preeclampsia as a risk factor for postpartum depression and psychosis: a systematic review and meta-analysis. Arch Womens Ment Health 2020;23(4):493–505. DOI: 10.1007/s00737-019-01010-1.
  21. Culpepper L, Lam RW, McIntyre RS. Cognitive impairment in patients with depression: awareness, assessment, and management. J Clin Psychiatry 2017;78(9):1383–1394. DOI: 10.4088/JCP.tk16043ah5c.
  22. Jak AJ, Crocker LD, Aupperle RL, et al. Neurocognition in PTSD: treatment insights and implications. Curr Top Behav Neurosci 2018;38:93–116. DOI: 10.1007/7854_2016_62.
  23. Mielke MM, Milic NM, Weissgerber TL, et al. Impaired cognition and brain atrophy decades after hypertensive pregnancy disorders. Circ Cardiovasc Qual Outcomes 2016;9(2 suppl 1):S70–S76. DOI: 10.1161/CIRCOUTCOMES.115.002461.
  24. Dayan N, Kaur A, Elharram M, et al. Impact of preeclampsia on long-term cognitive function. Hypertension 2018;72(6):1374–1380. DOI: 10.1161/HYPERTENSIONAHA.118.11320.
  25. Postma IR, Bouma A, Ankersmit IF, et al. Neurocognitive functioning following preeclampsia and eclampsia: a long-term follow-up study. Am J Obstet Gynecol 2014;211(1):37.e1-9. DOI: 10.1016/j.ajog.2014.01.042.
  26. Fields JA, Garovic VD, Mielke MM, et al. Preeclampsia and cognitive impairment later in life. Am J Obstet Gynecol 2017;217(1):74.e1–74.e11. DOI: 10.1016/j.ajog.2017.03.008.
  27. Basit S, Wohlfahrt J, Boyd HA. Pre-eclampsia and risk of dementia later in life: nationwide cohort study. BMJ 2018;363:k4109. DOI: 10.1136/bmj.k4109.
  28. Amaral LM, Cunningham MWJr, Cornelius DC, et al. Preeclampsia: long-term consequences for vascular health. Vasc Health Risk Manag 2015;11:403–415. DOI: 10.2147/VHRM.S64798.
  29. Bartsch E, Medcalf KE, Park AL, et al. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ 2016;353:i1753. DOI: 10.1136/bmj.i1753.
  30. Brouwers L, van der Meiden-van Roest AJ, Savelkoul C, et al. Recurrence of pre-eclampsia and the risk of future hypertension and cardiovascular disease: a systematic review and meta-analysis. BJOG 2018;125(13):1642–1654. DOI: 10.1111/1471-0528.15394.
  31. O'Brien JT, Thomas A. Vascular dementia. Lancet 2015;386(10004):1698–1706. DOI: 10.1016/S0140-6736(15)00463-8.
  32. Filley CM, Fields RD. White matter and cognition: making the connection. J Neurophysiol 2016;116(5):2093–2104. DOI: 10.1152/jn.00221.2016.
  33. Schmahmann JD, Smith EE, Eichler FS, et al. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 2008;1142(1):266–309. DOI: 10.1196/annals.1444.017.
  34. Filley CM, Franklin GM, Heaton RK, et al. White matter dementia: clinical disorders and implications. Neuropsychia Neuropsyc Behav Neurol 1988;1:239–254.
  35. Aukes AM, de Groot JC, Aarnoudse JG, et al. Brain lesions several years after eclampsia. Am J Obstet Gynecol 2009;200(5):504.e1-5. DOI: 10.1016/j.ajog.2008.12.033.
  36. Aukes AM, De Groot JC, Wiegman MJ, et al. Long-term cerebral imaging after preeclampsia. BJOG 2012;119(9):1117–1122. DOI: 10.1111/j.1471-0528.2012.03406.x.
  37. Elharram M, Dayan N, Kaur A, et al. Long-term cognitive impairment after preeclampsia: a systematic review and meta-analysis. Obstet Gynecol 2018;132(2):355–364. DOI: 10.1097/AOG.0000000000002686.
  38. Poston L, McCarthy AL, Ritter JM. Control of vascular resistance in the maternal and feto-placental arterial beds. Pharmacol Ther 1995;65(2):215–239. DOI: 10.1016/0163-7258(94)00064-a.
  39. Belfort MA, Tooke-Miller C, Allen JC, et al. Pregnant women with chronic hypertension and superimposed pre-eclampsia have high cerebral perfusion pressure. BJOG 2001;108(11):1141–1147. DOI: 10.1111/j.1471-0528.2003.00274.x.
  40. Oehm E, Reinhard M, Keck C, et al. Impaired dynamic cerebral autoregulation in eclampsia. Ultrasound Obstet Gynecol 2003;22(4):395–398. DOI: 10.1002/uog.183.
  41. Williams KP, Wilson S. Maternal cerebral blood flow changes associated with eclampsia. Am J Perinatol 1995;12(3):189–191. DOI: 10.1055/s-2007-994449.
  42. Cipolla MJ. Cerebrovascular function in pregnancy and eclampsia. Hypertension 2007;50(1):14–24. DOI: 10.1161/HYPERTENSIONAHA.106.079442.
  43. Hammer ES, Cipolla MJ. Cerebrovascular dysfunction in preeclamptic pregnancies. Curr Hypertens Rep 2015;17(8):64. DOI: 10.1007/s11906-015-0575-8.
  44. Cipolla MJ. The adaptation of the cerebral circulation to pregnancy: mechanisms and consequences. J Cereb Blood Flow Metab 2013;33(4):465–478. DOI: 10.1038/jcbfm.2012.210.
  45. Easton JD. Severe preeclampsia/eclampsia: hypertensive encephalopathy of pregnancy? Cerebrovasc Dis 1998;8(1):53–58. DOI: 10.1159/000015818.
  46. Donaldson JO. Eclamptic hypertensive encephalopathy. Semin Neurol 1988;8(3):230–233. DOI: 10.1055/s-2008-1041383.
  47. Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci 2017;67(3):345–351. DOI: 10.1007/s12576-017-0525-0.
  48. Jones-Muhammad M, Warrington JP. Cerebral blood flow regulation in pregnancy, hypertension, and hypertensive disorders of pregnancy. Brain Sci 2019;9(9):224. DOI: 10.3390/brainsci9090224.
  49. Johansson BB. Effect of an acute increase of the intravascular pressure on the blood-brain barrier: a comparison between conscious and anesthetized rats. Stroke 1978;9(6):588–590. DOI: 10.1161/01.str.9.6.588.
  50. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013;19(12):1584–1596. DOI: 10.1038/nm.3407.
  51. Schwartz RB, Feske SK, Polak JF, et al. Preeclampsia-eclampsia: clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology 2000;217(2):371–376. DOI: 10.1148/radiology.217.2.r00nv44371.
  52. Szarka A, Rigó J Jr, Lázár L, et al. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol 2010;11(1):59. DOI: 10.1186/1471-2172-11-59.
  53. Ho YH, Lin YT, Wu CW, et al. Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci 2015;22(1):46. DOI: 10.1186/s12929-015-0157-8.
  54. Li X, Han X, Bao J, et al. Nicotine increases eclampsia-like seizure threshold and attenuates microglial activity in rat hippocampus through the α7 nicotinic acetylcholine receptor. Brain Res 2016;1642:487–496. DOI: 10.1016/j.brainres.2016.04.043.
  55. Castanon N, Lasselin J, Capuron L. Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol (Lausanne) 2014;5:74. DOI: 10.3389/fendo.2014.00074.
  56. Joaquim AF, Appenzeller S. Neuropsychiatric manifestations in rheumatoid arthritis. Autoimmun Rev 2015;14(12):1116–1122. DOI: 10.1016/j.autrev.2015.07.015.
  57. Bowman GL, Dayon L, Kirkland R, et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement 2018;14(12):1640–1650. DOI: 10.1016/j.jalz.2018.06.2857.
  58. International Diabetes Federation. IDF Diabetes Atlas. 9th ed., Brussels, Belgium: International Diabetes Federation; 2019.
  59. Weir GC, Laybutt DR, Kaneto H, et al. Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes 2001;50:(Supplement 1):S154–S159. DOI: 10.2337/diabetes.50.2007.s154.
  60. Schwartz R, Gruppuso PA, Petzold K, et al. Hyperinsulinemia and macrosomia in the fetus of the diabetic mother. Diabetes Care 1994;17(7):640–648. DOI: 10.2337/diacare.17.7.640.
  61. Esakoff TF, Cheng YW, Sparks TN, et al. The association between birthweight 4000 g or greater and perinatal outcomes in patients with and without gestational diabetes mellitus. Am J Obstet Gynecol 2009;200(6):672.e1–672.e4. DOI: 10.1016/j.ajog.2009.02.035.
  62. Shostrom DCV, Sun Y, Oleson JJ, et al. History of gestational diabetes mellitus in relation to cardiovascular disease and cardiovascular risk factors in US women. Front Endocrinol 2017;8:144. DOI: 10.3389/fendo.2017.00144.
  63. Langer O, Yogev Y, Most O, et al. Gestational diabetes: the consequences of not treating. Am J Obstet Gynecol 2005;192(4):989–997. DOI: 10.1016/j.ajog.2004.11.039.
  64. Peters RK, Kjos SL, Xiang A, et al. Long-term diabetogenic effect of single pregnancy in women with previous gestational diabetes mellitus. Lancet Lond Engl 1996;347(8996):227–230. DOI: 10.1016/s0140-6736(96)90405-5.
  65. Tan PC, Ling LP, Omar SZ. The 50-g glucose challenge test and pregnancy outcome in a multiethnic Asian population at high risk for gestational diabetes. Int J Gynecol Obstet 2009;105(1):50–55. DOI: 10.1016/j.ijgo.2008.11.038.
  66. Byrn M, Penckofer S. The relationship between gestational diabetes and antenatal depression. J Obstet Gynecol Neonatal Nurs 2015;44(2):246–255. DOI: 10.1111/1552-6909.12554.
  67. Azami M, Badfar G, Soleymani A, et al. The association between gestational diabetes and postpartum depression: a systematic review and meta-analysis. Diabetes Res Clin Pract 2019;149:147–155. DOI: 10.1016/j.diabres.2019.01.034.
  68. Lady KWC, Hansen W, Epstein R. The relationship between gestational diabetes and postpartum depression. Am J Obstet Gynecol 2013;208(1):S84. DOI: 10.1016/j.ajog.2012.10.338.
  69. Von Kanel R, Mills PJ, Fainmam C, et al. Effects of psychological stress and psychiatric, disorders on blood coagulation and fibrinolysis: a behavioral pathway to coronary artery disease. Psychosom Med 2001;63(4):531–544. DOI: 10.1097/00006842-200107000-00003.
  70. Vacínová G, Vejražková D, Lukášová P, et al. Associations of polymorphisms in the candidate genes for Alzheimer's disease BIN1, CLU, CR1 and PICALM with gestational diabetes and impaired glucose tolerance. Mol Biol Rep 2017;44(2):227–231. DOI: 10.1007/s11033-017-4100-9.
  71. Palta P, Schneider AL, Biessels GJ, et al. Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains. J Int Neuropsychol Soc 2014;20(3):278–291. DOI: 10.1017/S1355617713001483.
  72. van den Berg E, Kloppenborg RP, Kessels RPC, et al. Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition. Biochim Biophys Acta 2009;1792(5):470–481. DOI: 10.1016/j.bbadis.2008.09.004.
  73. Spauwen PJJ, Köhler S, Verhey FRJ, et al. Effects of type 2 diabetes on 12-year cognitive change: results from the maastricht aging study. Diabetes Care 2013;36(6):1554–1561. DOI: 10.2337/dc12-0746.
  74. Matsuzaki T, Sasaki K, Tanizaki Y, et al. Insulin resistance is associated with the pathology of Alzheimer disease: the hisayama study. Neurology 2010;75(9):764–770. DOI: 10.1212/WNL.0b013e3181eee25f.
  75. Maher PA, Schubert DR. Metabolic links between diabetes and Alzheimer's disease. Exp Rev Neurother 2009;9(5):617–630. DOI: 10.1586/ern.09.18.
  76. Cheng G, Huang C, Deng H, et al. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 2012;42(5):484–491. DOI: 10.1111/j.1445-5994.2012.02758.x.
  77. Jayaraman A, Pik J. Alzheimer's disease and type 2 diabetes: multiple mechanisms contribute to interactions. Curr Diabetes Rep 2014;14(4):476. DOI: 10.1007/s11892-014-0476-2.
  78. Biessels GJ, Staekenborg S, Brunner E, et al. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 2006;5(1):64–74. DOI: 10.1016/S1474-4422(05)70284-2.
  79. Fontbonne A, Berr C, Ducimetire P, et al. Changes in cognitive abilities over a 4-year period are unfavorably affected in elderly diabetic subjects: results of the epidemiology of vascular aging study. Diabetes Care 2001;24(2):366–370. DOI: 10.2337/diacare.24.2.366.
  80. Yaffe K, Blackwell T, Whitmer RA, et al. Glycosylated hemoglobin level and development of mild cognitive impairment or dementia in older women. J Nutr Health Aging 2006;10(4):293–295.
  81. Cukierman-Yaffe T, Gerstein HC, Williamson JD, et al. Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the action to control cardiovascular risk in diabetes-memory in diabetes (ACCORD-MIND) trial. Diabetes Care 2009;32(2):221–226. DOI: 10.2337/dc08-1153.
  82. Ahtiluoto S, Polvikoski T, Peltonen M, et al. Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology 2010;75(13):1195–1202. DOI: 10.1212/WNL.0b013e3181f4d7f8.
  83. Sonnen JA, Larson EB, Brickell K, et al. Different patterns of cerebral injury in dementia with or without diabetes. Arch Neurol 2009;66(3):315–322. DOI: 10.1001/archneurol.2008.579.
  84. Biessels GJ, Strachan MWJ, Visseren FLJ, et al. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabet Endocri 2014;2(3):246–255. DOI: 10.1016/S2213-8587(13)70088-3.
  85. Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci 2015;1353(1):60–71. DOI: 10.1111/nyas.12807.
  86. Kivipelto M, Helkala EL, Hanninen T, et al. Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology 2001;56(12):1683–1689. DOI: 10.1212/wnl.56.12.1683.
  87. DeCarli C, Miller BL, Swan GE, et al. Cerebrovascular and brain morphologic correlates of mild cognitive impairment in the National Heart, Lung, and Blood Institute twin study. Arch Neurol 2001;58(4):643–647. DOI: 10.1001/archneur.58.4.643.
  88. Hill CD, Stoudemire A, Morris R, et al. Similarities and differences in memory deficits in patients with primary dementia and depression-related cognitive dysfunction. J Neuropsychiatry Clin Neurosci 1993;5(3):277–282. DOI: 10.1176/jnp.5.3.277.
  89. van den Berg E, Reijmer YD, de Bresser J, et al. 4 year follow-up study of cognitive functioning in patients with type 2 diabetes mellitus. Diabetologia 2010;53(1):58–65. DOI: 10.1007/s00125-009-1571-9.
  90. Gregg EW, Yaffe K, Cauley JA, et al. Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of osteoporotic fractures research group. Arch Intern Med 2000;160(2):174–180. DOI: 10.1001/archinte.160.2.174.
  91. Hassing LB, Grant MD, Hofer SM, et al. Type 2 diabetes mellitus contributes to cognitive decline in old age: a longitudinal population-based study. J Int Neuropsychol Soc 2004;10(4):599–607. DOI: 10.1017/S1355617704104165.
  92. Yaffe K, Falvey C, Hamilton N, et al. Diabetes, glucose control and 9 year cognitive decline among non-demented older adults. Arch Neurol 2012;69(9):1170–1175. DOI: 10.1001/archneurol.2012.1117.
  93. Young SE, Mainous 3rd AG. Carnemolla, hyperinsulinemia and cognitive decline in a middle-aged cohort. Diabetes Care 2006;29(12):2688–2693. DOI: 10.2337/dc06-0915.
  94. Okereke O, Pollak MN, Hu FB, et al. Plasma C peptide level and cognitive function among older women without diabetes mellitus. Arch Intern Med 2005;165(14):1651–1666. DOI: 10.1001/archinte.165.14.1651.
  95. Baker LD, Cross DJ, Minoshima S, et al., Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol 2011;68(1):51–57. DOI: 10.1001/archneurol.2010.225.
  96. Tabák AG, Akbaraly TN, Batty GD, et al. Depression and type 2 diabetes: a causal association? Lancet Diabet Endocri 2014;2(3):236–245. DOI: 10.1016/S2213-8587(13)70139-6.
  97. Becker S, Wojtowicz JM. A model of hippocampal neurogenesis inmemory and mood disorders. Trends Cogn Sci (Regul Ed) 2007;11(2):70–76. DOI: 10.1016/j.tics.2006.10.013.
  98. Houben K, Dassen FC, Jansen A. Taking control: working memory training in overweight individuals increases self-regulation of food intake. Appetite 2016;105:567–574. DOI: 10.1016/j.appet.2016.06.029.
  99. Byun K, Bayarsaikhan E, Kim D, et al. Induction of neuronal death by microglial AGE-albumin: implications for Alzheimer's disease. PLoS ONE 2012;7(5):e37917. DOI: 10.1371/journal.pone.0037917.
  100. Cukierman-Yaffe T. Diabetes, dysglycemia and cognitive dysfunction. Diabetes Metab Res Rev 2014;30(5):341–345. DOI: 10.1002/dmrr.2507.
  101. Munshi MN, Hayes M, Iwata I, et al. Which aspects of executive dysfunction influence ability to manage diabetes in older adults? Diabet Med 2012;29(9):1171–1177. DOI: 10.1111/j.1464-5491.2012.03606.x.
  102. Ryan CM, van Duinkerken E, Rosano C. Neurocognitive consequences of diabetes. Am Psychol 2016;71(7):563. DOI: 10.1037/a0040455.
  103. Wang DQ, Wang L, Wei MM, et al. Relationship between type 2 diabetes and white matter hyperintensity: a systematic review. Front Endocrinol (Lausanne) 2020;11:595962. DOI: 10.3389/fendo.2020.595962.
  104. Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes 2014;63(7):2244–2252. DOI: 10.2337/db14-0348.
  105. Hofmann W, Schmeichel BJ, Baddeley AD. Executive functions and self-regulation. Trends Cogn Sci 2012;16(3):174–180. DOI: 10.1016/j.tics.2012.01.006.
  106. Lavigne JE, Phelps CE, Mushlin A, et al. Reductions in individual work productivity associated with type 2 diabetes mellitus. Pharmacoeconomics 2003;21(15):1123–1134. DOI: 10.2165/00019053-200321150-00006.
  108. Guelinckx I, Devlieger R, Beckers K, et al. Maternal obesity: pregnancy complications, gestational weight gain and nutrition. Obes Rev 2008;9(2):140–150. DOI: 10.1111/j.1467-789X.2007.00464.x.
  109. Leddy MA, Power ML, Schulkin J. The impact of maternal obesity on maternal and fetal health. Rev Obstet Gynaecol 2008;1(4):170–178.
  110. Sebire N, Jolly M, Harris J, et al. Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. Int J Obes Relat Metab Disord 2001;25(8):1175–1182. DOI: 10.1038/sj.ijo.0801670.
  111. Catalano PM, Ehrenberg HM. The short- and long-term implications of maternal obesity on the mother and her offspring. Br J Obstet Gynaecol 2006;113(10):1126–1133. DOI: 10.1111/j.1471-0528.2006.00989.x.
  112. Scott-Pillai R, Spence D, Cardwell C, et al. The impact of body mass index on maternal and neonatal out- comes: a retrospective study in a UK obstetric population, 2004– 2011. Br J Obstet Gynaecol 2013;120(8):932–939. DOI: 10.1111/1471-0528.12193.
  113. O'Reilly JR, Reynolds RM. The risk of maternal obesity to the long-term health of the offspring. Clin Endocrinol (Oxf) 2013;78(1):9–16. DOI: 10.1111/cen.12055.
  114. Stothard KJ, Tennant PWG, Bell R, et al. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 2009;301(6):636–650. DOI: 10.1001/jama.2009.113.
  115. Radzicka-Mularczyk SA, Pietryga M, Brazert J. How mother's obesity may affect the pregnancy and offspring. Ginekol Pol 2020;91(12):769–772. DOI: 10.5603/GP.2020.0116.
  116. Lindsay KL, Brennan L, Rath A, et al. Gestational weight gain in obese pregnancy: impact on maternal and foetal metabolic parameters and birthweight. J Obstet Gynaecol 2018;38(1):60–65. DOI: 10.1080/01443615.2017.1328670.
  117. Vitner D, Harris K, Maxwell C, et al. Obesity in pregnancy: a comparison of four national guidelines. J Matern Fetal Neonatal Med 2019;32(15):2580–2590. DOI: 10.1080/14767058.2018.1440546.
  118. Bocarsly ME, Fasolino M, Kane GA, et al. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci USA 2015;112(51):15731–15736. DOI: 10.1073/pnas.1511593112.
  119. Smith E, Hay P, Campbell L, et al. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev 2011;12(9):740–755. DOI: 10.1111/j.1467-789X.2011.00920.x.
  120. Gunstad J, Lhotsky A, Wendell CR, et al. Longitudinal examination of obesity and cognitive function: results from the Baltimore longitudinal study of aging. Neuroepidemiology 2010;34(4):222–229. DOI: 10.1159/000297742.
  121. Coppin G, Nolan-Poupart S, Jones-Gotman M, et al. Working memory and reward association learning impairments in obesity. Neuropsychologia 2014;65L:146–155. DOI: 10.1016/j.neuropsychologia.2014.10.004.
  122. Whitmer RA, Gustafson DR, Barrett-Connor E, et al., Central obesity and increased risk of dementia more than three decades later. Neurology 2008;71(14):1057–1064. DOI: 10.1212/01.wnl.0000306313.89165.ef.
  123. Hassing LB, Dahl AK, Thorvaldsson V, et al. Overweight in midlife and risk of dementia: a 40-year follow-up study. Int J Obes (Lond) 2009;33(8):893–898. DOI: 10.1038/ijo.2009.104.
  124. Anstey KJ, Cherbuin N, Budge M, et al. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 2011;12(5):e426–e437. DOI: 10.1111/j.1467-789X.2010.00825.x.
  125. Miller J, Kranzler J, Liu Y, et al. Neurocognitive findings in Prader-Willi syndrome and early-onset morbid obesity. J Pediatr 2006;149(2):192–198. DOI: 10.1016/j.jpeds.2006.04.013.
  126. Miller JL, Couch J, Schwenk K, et al. Early childhood obesity is associated with compromised cerebellar development. Dev Neuropsychol 2009;34(3):272–283. DOI: 10.1080/87565640802530961.
  127. Stinson EJ, Krakoff J, Gluck ME. Depressive symptoms and poorer performance on the Stroop task are associated with weight gain. Physiol Behav 2018;186:25–30. DOI: 10.1016/j.physbeh.2018.01.005.
  128. Rasmussen KM, Yaktine AL, ed. Weight gain during pregnancy: reexamining the guidelines. Washington, DC: The National Academies Press; 2009.
  129. Galtier-Dereure F, Boegner C, Bringer J. Obesity and pregnancy: complications and cost. Am J Clin Nutr 2000;71(5 Suppl):1242S–1248SS. DOI: 10.1093/ajcn/71.5.1242s.
  130. Stotland NE, Hopkins LM, Caughey AB. Gestational weight gain, macrosomia, and risk of cesarean birth in nondiabetic nuliparas. Obstet Gynecol 2004;104(4):671–677. DOI: 10.1097/01.AOG.0000139515.97799.f6.
  131. Hilson JA, Rasmussen KM, Kjolhede CL. Excessive weight gain during pregnancy is associated with earlier termination of breastfeeding among white women. J Nutr 2006;136(1):140–146. DOI: 10.1093/jn/136.1.140.
  132. Sui Z, Turnbull DA, Dodd JM. Overweight and obese women's perceptions about making healthy change during pregnancy: a mixedmethod study. Matern Child Health J 2013;17(10):879–887. DOI: 10.1007/s10995-012-1211-8.
  133. Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits 2013;7:152. DOI: 10.3389/fncir.2013.00152.
  134. Stice E, Spoor S, Bohon C, et al. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 2008;322(5900):449–452. DOI: 10.1126/science.1161550.
  135. Robinson TA, Berridge KC. The neural basis of drug craving: an incentivesensitization theory of addiction. Brain Res Rev 1993;18(3):247–291. DOI: 10.1016/0165-0173(93)90013-p.
  136. Volkow ND, Fowler JS, Wang GJ. Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol 2002;13(5-6):355–366. DOI: 10.1097/00008877-200209000-00008.
  137. Nederkoorn C, Braet C, Van Eijs Y, et al. Why obese children cannot resist food: the role of impulsivity. Eat Behav 2006;7(4):315–322. DOI: 10.1016/j.eatbeh.2005.11.005.
  138. Yokum S, Marti CN, Smolen A, et al. Relation of the multilocus genetic composite reflecting high dopamine signaling capacity to future increases in BMI. Appetite 2015;87:38–45. DOI: 10.1016/j.appet.2014.12.202.
  139. Stice E, Burger K. Neural vulnerability factors for obesity. Clin Psychol Rev 2019;68:38–53. DOI: 10.1016/j.cpr.2018.12.002.
  140. Bourassa K, Sbarra DA. Body mass and cognitive decline are indirectly associated via inflammation among aging adults. Brain Behav Immun 2017;60:63–70. DOI: 10.1016/j.bbi.2016.09.023.
  141. Solas M, Milagro FI, Ramírez MJ, et al. Inflammation and gut-brain axis link obesity to cognitive dysfunction: plausible pharmacological interventions. Curr Opin Pharmacol 2017;37:87–92. DOI: 10.1016/j.coph.2017.10.005.
  142. Otero TM, Barker LA. The frontal lobes and executive functioning. In: Handbook of Executive Functioning Goldstein S, Naglieri J, ed., New York: Springer; 2014. pp. 29–45.
  143. Bieliński M, Lesiewska N, Junik R, et al. Dopaminergic genes polymorphisms and prefrontal cortex efficiency among obese people - whether gender is a differentiating factor? Curr Mol Med 2019;19(6):405–418. DOI: 10.2174/1566524019666190424143653.
  144. Preventing Excess Gestational Weight Gain and Obesity in Pregnancy: the Potential of Targeting Psychological Mechanisms.
  145. da Luz FQ, Hay P, Wisniewski L, et al. The treatment of binge eating disorder with cognitive behavior therapy and other therapies: an overview and clinical considerations. Obes Rev 2020;22(5): e13180.
  146. Gavin NI, Gaynes BN, Lohr KN, et al. Perinatal depression: a systematic review of prevalence and incidence. Obstet Gynecol 2005;106(5, Part 1):1071–1083. DOI: 10.1097/01.AOG.0000183597.31630.db.
  147. Lee DT, Chung TK. Postnatal depression: an update. Best Pract Res Clin Obstet Gynaecol 2007;21(2):183–191. DOI: 10.1016/j.bpobgyn.2006.10.003.
  148. Van den Bergh BRH, Mulder EJH, Mennes M, et al. Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: links and possible mechanisms. a review. Neurosci Biobehav Rev 2005;29(2):237–258. DOI: 10.1016/j.neubiorev.2004.10.007.
  149. Goedhart G, Snijders AC, Hesselink AE, et al. Maternal depressive symptoms in relation to perinatal mortality and morbidity: results from a large multiethnic cohort study. Psychosom Med 2010;72(8):769–776. DOI: 10.1097/PSY.0b013e3181ee4a62.
  150. Bowen A, Muhajarine N. Prevalence of antenatal depression in women enrolled in an outreach program in Canada. J Obstet Gynecol Neonatal Nurs 2006;35(4):491–498. DOI: 10.1111/j.1552-6909.2006.00064.x.
  151. Bowen A, Muhajarine N. Antenatal depression. Can Nurse 2006;102(9):26–30.
  152. Bennett HA, Einarson A, Taddio A, et al. Prevalence of depression during pregnancy: systematic review. Obstet Gynecol 2004;103(4):698–709. DOI: 10.1097/01.AOG.0000116689.75396.5f.
  153. Amgalan A, Andescavage N, Limperopoulos C. Prenatal origins of neuropsychiatric diseases. Acta Paediatr 2021. Epub ahead of print.
  154. Psychosocial Paediatrics Committee, Canadian Paediatric Society (CPS). Maternal depression and child development. Paediat Child Health 2004;9(8):575–583. DOI: 10.1093/pch/9.8.575.
  155. Macbeth AH, Luine VN. Changes in anxiety and cognition due to reproductive experience: a review of data fromrodent and human mothers. Neurosci Biobehav Rev 2010;34(3):452–467. DOI: 10.1016/j.neubiorev.2009.08.011.
  156. Keenan PA, Yaldoo DT, Stress ME, et al. Explicit memory in pregnant women. Am J Obstet Gynecol 1998;179(3 Pt 1):731–737. DOI: 10.1016/s0002-9378(98)70073-0.
  157. Mazor E, Sheiner E, Wainstock T, et al. The association between depressive state and maternal cognitive function in postpartum women. Am J Perinatol 2019;36(3):285–290. DOI: 10.1055/s-0038-1667376.
  158. Zlatar ZZ, Moore RC, Palmer BW, et al. Cognitive complaints correlate with depression rather than concurrent objective cognitive impairment in the successful aging evaluation baseline sample. J Geriatr Psychiatry Neurol 2014;27(3):181–187. DOI: 10.1177/0891988714524628.
  159. Logan DM, Hill KR, Jones R, et al. How do memory and attention change with pregnancy and childbirth? A controlled longitudinal examination of neuropsychological functioning in pregnant and postpartum women. J Clin Exp Neuropsychol 2014;36(5):528–539. DOI: 10.1080/13803395.2014.912614.
  160. Hohman TJ, Beason-Held LL, Resnick SM. Cognitive complaints, depressive symptoms, and cognitive impairment: are they related? J Am Geriatr Soc 2011;59(10):1908–1912. DOI: 10.1111/j.1532-5415.2011.03589.x.
  161. De Lissnyder E, Koster EH, Everaert J, et al. Internal cognitive control in clinical depression: general but no emotion-specific impairments. Psychiatry Res 2012;199(2):124–130. DOI: 10.1016/j.psychres.2012.04.019.
  162. Dalby RB, Frandsen J, Chakravarty MM, et al. Correlations between Stroop task performance and white matter lesion measures in late-onset major depression. Psychiat Res Neuroimag 2012;202(2):142–149. DOI: 10.1016/j.pscychresns.2011.12.009.
  163. Black S, Kraemer K, Shah A, et al. Diabetes, depression, and cognition: a recursive cycle of cognitive dysfunction and glycemic dysregulation. Curr Diab Rep 2018;18(11):118. DOI: 10.1007/s11892-018-1079-0.
  164. Lasserre AM, Glaus J, Vandeleur CL, et al. Depression with atypical features and increase in obesity, body mass index, waist circumference, and fat mass: a prospective, population based study. JAMA Psychiatry 2014;71(8):880–888. DOI: 10.1001/jamapsychiatry.2014.411.
  165. Bieliński M, Jaracz M, Lesiewska N, et al. Association between COMT Val158Met and DAT1 polymorphisms and depressive symptoms in the obese population. Neuropsychiatr Dis Treat 2017;13:2221–2229. DOI: 10.2147/NDT.S138565.
  166. Mansur RB, Brietzke E, McIntyre RS. Review: is there a “metabolicmood syndrome”? a review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev 2015;52:89–104. DOI: 10.1016/j.neubiorev.2014.12.017.
  167. van Duinkerken E, Snoek FJ. Interaction between diabetes and depression: consequences for cognition and the brain. Curr Med Lit: Psychiatry 2012;23:69–78. DOI: 10.5275/ijcr.2012.10.05.
  168. Sullivan MD, Katon WJ, Lovato LC, et al. Association of depression with accelerated cognitive decline among patients with type 2 diabetes in the accord-mind trial. JAMA Psychiatry 2013;1(10):70. DOI: 10.1001/jamapsychiatry.2013.1965.
  169. Watari K, Elderkin-Thompson V, Ajilore O, et al. Neuroanatomical correlates of executive functioning in depressed adults with type 2 diabetes. J Clin Exp Neuropsychol 2008;30(4):389–397. DOI: 10.1080/13803390701440486.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.