Donald School Journal of Ultrasound in Obstetrics and Gynecology

Register      Login

VOLUME 13 , ISSUE 4 ( October-December, 2019 ) > List of Articles


Application of Three-dimensional Ultrasound in the First Trimester

Marisa Borenstein Guelman, Guillermo Azumendi Pérez

Keywords : Embryo, Fetus, First-trimester scan, Pregnancy, Three-dimensional ultrasonography.

Citation Information : Guelman MB, Pérez GA. Application of Three-dimensional Ultrasound in the First Trimester. Donald School J Ultrasound Obstet Gynecol 2019; 13 (4):169-180.

DOI: 10.5005/jp-journals-10009-1604

License: CC BY-NC 4.0

Published Online: 00-12-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


The first trimester of pregnancy is the most critical moment for the embryo and fetal development in terms of rapid changes and modification of its internal and external appearance. The modern ultrasound equipment enables us to identify some of these changes as early as 5–7 weeks after the last menstrual period (LMP). The relevance of 3D ultrasound (3D US) in the detection and demonstration of fetal abnormalities has already been proven. Some of the 3D/4D tools have shown some benefits compared to the 2D US when a malformation is present. The 3D images are usually clearer for parents to understand the problem or the normality of the small fetus. There are five main aspects of the 3D/4D US to mention, which are relevant during the first trimester of pregnancy: (1) the multiplanar approach of the embryo and the fetus; (2) the ability to obtain planes that are not accessible with 2D US; (3) the possibility to do an off-line analysis of acquired 3D/4D volumes and telemedicine; (4) the images are usually easier to interpret for parents when displayed with the surface mode; and (5) the increasing amount of tools available to process fetal images and perform different measurements. Answer to the question is it essential to have a 3D/4D ultrasound machine in everyday practice to carry out a first-trimester scan is obviously negative; however, as most of the practitioners do have one nowadays, it is important to point out its benefits and limitations.

PDF Share
  1. Pooh RK, Kurjak A. Novel application of three-dimensional HD live imaging in prenatal diagnosis from the first trimester. J Perinat Med 2015;43(2):147–158. DOI: 10.1515/jpm-2014-0157.
  2. Pooh RK, Shiota K, Kurjak A. Imaging of the human embryo with magnetic resonance imaging microscopy and high resolution transvaginal 3-dimensional sonography: human embryology in the 21st century. Am J Obstet Gynecol 2011;204(1):77.e1–77.e16. DOI: 10.1016/j.ajog.2010.07.028.
  3. Pooh RK, Kurjak A. 3D/4D sonography moved prenatal diagnosis of fetal anomalies from the second to the first trimester of pregnancy. J Maternal-Fetal & Neonatal Med 2012;25(5):433–455. DOI: 10.3109/14767058.2011.636107.
  4. Martinez Ten P, Gomez Ruiz ML, Santacruz B. Sonoembriologia. Aportación de la ecografía 3D. In: Gallo M, Martinez-Ten P, Espinosa A, ed. Ecografía Tridimensional (3D/4D) en el embarazo. España: Amolca, Actualidades médicas C.A; 2013. pp. 63–77.
  5. Kurjak A, Pooh RK, Merce LT, et al. Structural and functional early human development assessed by three-dimensional and four-dimensional sonography. Fertil Steril 2005;84(5):1285–1299. DOI: 10.1016/j.fertnstert.2005.03.084.
  6. Benoit B, Hafner T, Kurjak A, et al. Three-dimensional sonoembriology. J Perinat Med 2002;30(1):63–73. DOI: 10.1515/JPM.2002.009.
  7. Zanforlin Filho DM, Araujo Junior E, Guiaräes Filho HA, et al. Sonoembriology by three-dimensional ultrasonography: pictorial essay. Arch Gynecol Obstet 2007;276(2):197–200. DOI: 10.1007/s00404-007-0330-8.
  8. Blaas HG, Eik-Nes SH. Sonoembriology and early prenatal diagnosis of neural anomalies. Prenat Diagn 2009;29(4):312–315. DOI: 10.1002/pd.2170.
  9. Pooh RK. Sonoembriology by 3D HD live silhouette ultrasound – what is added by the “see-through fashion”? J Perinat Med 2016;44(2): 139–148. DOI: 10.1515/jpm-2016-0008.
  10. Quezada MS, Gil MM, Francisco C, et al. Screening for trisomies 21, 18 and 13 by cell-free DNA analysis of maternal blood at 10–11 weeks’ gestation and the combined test at 11–13 weeks. Ultrasound Obstet Gynecol 2015;45(1):36–41. DOI: 10.1002/uog.14664.
  11. Kagan KO, Wright D, Spencer K, et al. First-trimester screening for trisomy 21 by free beta human chorionic gonadotropin and pregnancy-associated plasma protein-A: impact of maternal and pregnancy characteristics. Ultrasound Obstet Gynecol 2008;31(5):493–502. DOI: 10.1002/uog.5332.
  12. Rolnik DL, Wright D, Poon LCY, et al. ASPRE trial: performance of screening for preterm pre-eclampsia. Ultrasound Obstet Gynecol 2017;50(4):492–495. DOI: 10.1002/uog.18816.
  13. Faro C, Benoit B, Wergrzyn P, et al. Three dimensional sonographic description of the fetal frontal bones and metopic suture. Ultrasound Obstet Gynecol 2005;26(6):618–621. DOI: 10.1002/uog.1997.
  14. Faro C, Wegrzyn P, Benoit B, et al. Metopic suture in fetuses with holoprosencephaly at 11-13+6 weeks of gestation. Ultrasound Obstet Gynecol 2006;27(2):162–166. DOI: 10.1002/uog.2632.
  15. Syngelaki A, Cheleman T, Dagklis T, et al. Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11-13 weeks. Prenat Diagn 2011;31(1):90–102. DOI: 10.1002/pd.2642.
  16. Sepulveda W, Wong AE, Martinez-Ten P, et al. Retronasal triangle: a sonographic landmark for the screening of cleft palate in the first trimester. Ultrasound Obstet Gyencol 2010;35(1):7–13. DOI: 10.1002/uog.7484.
  17. Martinez-Ten P, Adiego B, Illescas T, et al. First trimester diagnosis of cleft lip and palate using three-dimensional ultrasound. Ultrasound Obstet Gynecol 2012;40(1):40–46. DOI: 10.1002/uog.10139.
  18. Sepulveda W, Wong AE, Viñals F, et al. Absent mandibular gap in the retronasal triangle view: a clue to the diagnosis of micrognathia in the first trimester. Ultrasound Obstet Gynecol 2012;39:152–156. DOI: 10.1002/uog.10121.
  19. Rembouskos G, Cicero S, Londo D, et al. Assessment of the fetal nasal bone at 11-14 weeks of gestation by three-dimensional ultrasound. Ultrasound Obstet Gynecol 2004;23(3):232–236. DOI: 10.1002/uog.952.
  20. Plasencia W, Dagklis T, Pachoumi C, et al. Frontomaxillary facial angle at 11 + 0 to 13 + 6 weeks: effect of plane of acquisition. Ultrasound Obstet Gynecol 2007;29(6):660–665. DOI: 10.1002/uog.4033.
  21. Borenstein M, Persico N, Kaihura C, et al. Frontomaxillary facial angle in chromosomally normal fetuses at 11 + 0 to 13 + 6 weeks. Ultrasound Obstet Gynecol 2007;30(5):737–741. DOI: 10.1002/uog.5134.
  22. Adiego B, Martinez-Ten P, Illescas T, et al. First-trimester assessment of nasal bone using retronasal triangle view: a prospective study. Ultrasound Obstet Gynecol 2014;43(3):272–276. DOI: 10.1002/uog.12525.
  23. Moratalla J, Pintoffl K, Minekawa R, et al. Semi-automated system for measurement of nuchal translucency thickness. Ultrasound Obstet Gynecol 2010;36(4):412–416. DOI: 10.1002/uog.7737.
  24. Falcon O, Cavoretto P, Peralta CF, et al. Fetal head-to-trunk column ratio in chromosomally abnormal fetuses at 11+0 to 13+6 weeks of gestation. Ultrasound Obstet Gynecol 2005;26(7):755–760. DOI: 10.1002/uog.1991.
  25. Peralta CF, Cavoretto P, Csapo B, et al. Lung and heart volumes by three-dimensional ultrasound in normal fetuses at 12-32 weeks’ gestation. Ultrasound Obstet Gynecol 2006;27(2):128–133. DOI: 10.1002/uog.2670.
  26. Falcon O, Wegrzyn P, Faro C, et al. Gestational sac volume measured by three-dimensional ultrasound at 11 to 13 + 6 weeks of gestation: relation to chromosomal defects. Ultrasound Obstet Gynecol 2005;25(6):546–550. DOI: 10.1002/uog.1898.
  27. Wegrzyn P, Faro C, Falcon O, et al. Placental volume measured by three-dimensional ultrasound at 11 to 13 + 6 weeks of gestation: relation to chromosomal defects. Ultrasound Obstet Gynecol 2005;26(1):28–32. DOI: 10.1002/uog.1923.
  28. Wegrzyn P, Fabio C, Peralta A, et al. Placental volume in twin and triplet pregnancies measured by three-dimensional ultrasound at 11 + 0 to 13 + 6 weeks of gestation. Ultrasound Obstet Gynecol 2006;27(6):647–651. DOI: 10.1002/uog.2783.
  29. Farina A. Systematic review on first trimester three-dimensional placental volumetry predicting small for gestational age infants. Prenat Diagn 2016;36(2):135–141. DOI: 10.1002/pd.4754.
  30. Arakaki T, Hasegawa J, Nakamura M, et al. Prediction of early and late-onset pregnancy induced hypertension using placental volume on three-dimensional ultrasound and uterine artery Doppler. Ultrasound Obstet Gynecol 2015;45(5):539–543. DOI: 10.1002/uog.14633.
  31. Larsen ML, Naver KV, Kjaer MM, et al. Reproducibility of 3-dimensional ultrasound measurements of placental volume at gestational ages 11 - 14 weeks. Facts Views Vis Obgyn 2015;7(4):203–209.
  32. Raine-Fenning N, Jayaprakasan K, Clewes J, et al. SonoAVC: a novel method of automatic volume calculation. Ultrasound Obstet Gynecol 2008;31(6):691–696. DOI: 10.1002/uog.5359.
  33. Borenstein M, Azumendi Perez G, Molina Garcia F, et al. Gestational sac volume: comparison between SonoAVC and VOCAL measurements at 11 + 0 to 13 + 6 weeks of gestation. Ultrasound Obstet Gynecol 2009;34(5):510–514. DOI: 10.1002/uog.7342.
  34. Sur SD, Jayaprakasan K, Jones NW, et al. A novel technique for the semi-automated measurement of embryo volume: an intraobserver reliability study. Ultrasound Med Biol 2010;36(5):719–725. DOI: 10.1016/j.ultrasmedbio.2010.03.006.
  35. Duin LK, Willekes C, Vossen M, et al. Reproducibility of fetal renal pelvis volume assessed by three-dimensional ultrasonography with two different measurement techniques. J Clin Ultrasound 2013;41(4):230–234. DOI: 10.1002/jcu.22039.
  36. Kist WJ, Slaghekke F, Papanna R, et al. Sonography-based automated volume count to estimate fetal urine production in twin-to-twin transfusion syndrome: comparison with virtual organ computer-aided analysis. Am J Obstet Gynecol 2011;205(6):574.e1–574.e5. DOI: 10.1016/j.ajog.2011.06.090.
  37. Rizzo G, Capponi A, Pietrolucci ME, et al. Role of sonographic automatic volume calculation in measuring fetal cardiac ventricular volumes using 4-dimensional sonography: comparison with virtual organ computer-aided analysis. J Ultrasound Med 2010;29(2):261–270. DOI: 10.7863/jum.2010.29.2.261.
  38. Rizzo G, Capponi A, Pietrolucci ME, et al. Sonographic automated volume count (SonoAVC) in volume measurement of fetal fluid-filled structures: comparison with virtual organ computer-aided analysis (VOCAL). Ultrasound Obstet Gynecol 2008;32(1):111–112. DOI: 10.1002/uog.5387.
  39. DeVore GR, Falkensammer P, Sklansky MS, et al. Spatio-temporal image correlation (STIC): New technology for evaluation of the fetal heart. Ultrasound Obstet Gynecol 2003;22(4):380–387. DOI: 10.1002/uog.217.
  40. Viñals F, Poblete P, Giuliano A. Spatio-temporal image correlation (STIC): a new tool for the prenatal screening of congenital heart defects. Ultrasound Obstet Gynecol 2003;22(4):388–394. DOI: 10.1002/uog.883.
  41. Comas C, Azumendi G, Alonso I, et al. Spatio-temporal image correlation (STIC) as a new screening tool for prenatal detection of congenital heart defects. The first Spanish’ experience. Ultrasound Rev Obstet Gynecol 2006;6:45–57. DOI: 10.1080/14722240600645519.
  42. Turan S, Turan OM, Ty-Torredes K, et al. Standardization of the first-trimester fetal cardiac examination using spatiotemporal image correlation with tomographic ultrasound and color doppler imaging. Ultrasound Obstet Gynecol 2009;33(6):652–656. DOI: 10.1002/uog.6372.
  43. Bennasar M, Martínez JM, Olivella A, et al. Feasibility and accuracy of fetal echocardiography using four-dimensional spatiotemporal image correlation technology before 16 weeks’ gestation. Ultrasound Obstet Gynecol 2009;33(6):645–651. DOI: 10.1002/uog.6374.
  44. Wiechec MT, Nocun AA. Early fetal heart assessment using 4D ultrasound – STIC technique in 11th-13 + 6 scans. Ultrasound Obstet Gynecol 2008;32(3):333. DOI: 10.1002/uog.5683.
  45. Espinoza J, Lee W, Viñals F, et al. Collaborative study of 4-dimensional fetal echocardiography in the first trimester of pregnancy. J Ultraasound Med 2014;33(6):1079–1084. DOI: 10.7863/ultra.33.6.1079.
  46. Votino C, Cos T, Abu-Rustum R, et al. Use of spatiotemporal image correlation at 11-14 weeks’ gestation. Ultrasound Obstet Gynecol 2013;42:669–678. DOI: 10.1002/uog.12548.
  47. Abuhamad A, Falkensammer P, Reichartseder F, et al. Automated retrieval of standard diagnostic fetal cardiac ultrasound planes in the second trimester of pregnancy: a prospective evaluation of software. Ultrasound Obstet Gynecol 2008;31(1):30–36. DOI: 10.1002/uog.5228.
  48. Yeo L, Romero R, Jodicke C, et al. Simple targeted arterial rendering (STAR) technique: a novel and simple method to visualize the fetal cardiac outflow tracts. Ultrasound Obstet Gynecol 2011;37(5): 549–556. DOI: 10.1002/uog.8841.
  49. Yeo L, Romero R, Jodicke C, et al. Four-chamber view and ‘swing technique’ (FAST) echo: a novel and simple algorithm to visualize standard fetal echocardiographic planes. Ultrasound Obstet Gynecol 2011;37(4):423–431. DOI: 10.1002/uog.8840.
  50. Viñals F, Mandujano L, Vargas G, et al. Prenatal diagnosis of congenital heart disease using four-dimensional spatio-temporal image correlation (STIC) telemedicine via an internet link: a pilot study. Ultrasound Obstet Gynecol 2005;25(1):25–31. DOI: 10.1002/uog.1796.
  51. Tajada M, Rueda S, Bolillos MJ, et al., Tele-Ecogtrafía en el diagnóstico Prenatal de Cardiopatias Congénitas. (Telemedicine in the diagnosis of prenatal cardiac defects) oral communication in II International Course in Fetal Medicine organized by Ultrasound and Prenatal Diagnosis Unit, Gutenberg Clinic, Málaga, Spain; 2009. First Prize awarded.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.