Citation Information :
Honemeyer U. Fetal Neuropathology and Abnormal Motor Assessment—Fetal Akinesia Deformation Sequence: KANET is of Additional Value for the In Utero Diagnosis. Donald School J Ultrasound Obstet Gynecol 2019; 13 (3):88-93.
The fetal activity has a fundamental role in forming the fetal gestalt. Fetal movements produce biomechanical stress, with distinct biochemical effects determining the morphogenesis of the musculoskeletal apparatus. As a result of normal maturation of the fetal brainstem, and shaped by general movements (GMs) and increasing variability of highly differentiated isolated movements, the typical human fetal gestalt evolves. KANET scoring system allows quantitative and qualitative determination and analysis of fetal movements and gestalt during the second and the third trimesters. The diagnostic efficiency of KANET in detecting abnormal fetal behavior and neuromorbidity is demonstrated with two cases of fetal akinesia deformation sequence (FADS).
Kurjak A, Adenotopo W, et al. Normal standards for fetal Neurobehavioral developments-longitudinal quantification by four-dimensional sonography. J Perinat Med 2006;34(1):56–65. DOI: 10.1515/JPM.2006.007.
Adenotopo W, Kurjak A, et al. Behavior of an anencephalic fetus studied by 4 D sonography. J Matern Fetal Neonatol Med 2005 Feb;17(2):165–168. DOI: 10.1080/jmf.17.2.165.168.
Yigiter AB, Goenenc G, et al. The assessment of fetal behavior of a fetus with lissencephaly by 4D ultrasound. Donald School J Ultrasound Obstet Gynecol 2013;7(2):208–212. DOI: 10.5005/jp-journals-10009-1285.
Müller GB. Embryonic motility: environmental influences and evolutionary innovation. Evol Dev 2003;5:56–60. DOI: 10.1046/j.1525-142X.2003.03009.x.
Verbruggen SW, Kaiz B, et al. Stresses and strains on the human fetal skeleton during development. J R Soc Interface 2018;15:20170593. DOI: 10.1098/rsif.2017.0593.
Brunt LH, Norton JL, et al. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development. J Biomech 2015;48:3112–3122. DOI: 10.1016/j.jbiomech.2015.07.017.
Nowlan NC, Murphy P, et al. A dynamic pattern of mechanical stimulation promotes ossification in avian embryonic long bones. J Biomech 2008;41:249–258. DOI: 10.1016/j.jbiomech.2007.09.031.
Nowlan NC, Dumas G, et al. Biophysical stimuli induced by passive movements compensate for lack of skeletal muscle during embryonic skeletogenesis. Biomech Model Mechanobiol 2012;11:207–219. DOI: 10.1007/s10237-011-0304-4.
De Vries JI, Fong BF. Changes in fetal motility as a result of congenital disorders: an overview. Ultrasound Obstet Gynecol 2007;29(5): 590–599. DOI: 10.1002/uog.3917.
Zimmer EZ, Jakobi P, et al. Cardiotocographic and sonographic findings in two cases of antenatally diagnosed intrauterine fetal brain death. Prenat Diagn 1992 Apr;12(4):271–276. DOI: 10.1002/pd.1970120406.
Boesen PV, French CE. Acute respiratory distress in Pena-Shokeir syndrome. Ear Nose Throat J 2004 Nov;83(11):772–773. DOI: 10.1177/014556130408301115.
Kho N, Czarneck L, et al. Pena-Shokeir phenotype: case presentation and review. J Child Neurol 2002 May;17(5):397–399. DOI: 10.1177/088307380201700519.
Hevner RF, Horoupian DS. Pena-Shokeir Syndrome phenotype associated with bilateral opercular polimicrogyria. Pediatr Neurol 1996 Nov;15(4):348–351. DOI: 10.1016/S0887-8994(96)00225-1.
Takada E, Koyama N, et al. Neuropathology of infant with Pena-Shokeir I syndrome. Pediatr Neurol 1994 May;10(3):241–243. DOI: 10.1016/0887-8994(94)90031-0.
Vuopala K, Herva R. Lethal congenital contracture syndrome: further delineation and genetic aspects. J Med Genet 1994 Jul;31(7):521–527. DOI: 10.1136/jmg.31.7.521.
Nousiainen HO, Kestila M, et al. Mutations in mRNA export mediator GLE1 result in fetal motoneuron disease. Nat Genet 2008 Feb;40(2):155–157. DOI: 10.1038/ng.2007.65.
Dzinovic A, Heljic S. Pena-Shokeir phenotype (fetal akinesia/hypokinesia sequence. Med Arh 2006;60(6):383–385.
Maekela-Bengs P, Jaervinen N, et al. Assignment of the disease locus for lethal congenital contracture syndrome to a restricted region of chromosome 9q34, by genome scan using five affected individuals. Am J Hum Genet 1998 Aug;63(2):506–516. DOI: 10.1086/301968.
Pakkasjaeri N, Ritvanen A, et al. Lethal congenital contracture syndrome(LCCS) and other lethal arthrogryposis in Finnland- an epidemiological study. Am J Med Genet A 2006 Sep 1;140A(17): 1834–1839. DOI: 10.1002/ajmg.a.31381.
Piotrowski K, Gizewska M, et al. Prenatal suggestion of Pena-Shokeir I syndrome postnatally confirmed. Arch Perin Med 2010;16(2):113–117.
Chen YT, Hsu ST, et al. Cardiotocographic and Doppler ultrasonographic findings in a fetus with brain death syndrome. J Obstet Gynecol 2006 Sep;45(3):279–282. DOI: 10.1016/S1028-4559(09)60243-6.
Iwasaki S, Morokuma S, et al. Acute onset antenatal fetal neurological injury suspected prenatally based on abnormalities in antenatal testing: a case report. J Matern Fetal Neonatal Med 2009 Dec;22(12):1207–1213. DOI: 10.3109/14767050903019619.
Donker ME, Eijckelhof BHW, et al. Serial postural and motor assessment of fetal akinesia deformation sequence (FADS). Early Hum Dev 2009;85(12):785–790. DOI: 10.1016/j.earlhumdev.2009.10.008.
Tjon JK, Tan-Sindhunata GM, et al. Fetal akinesia deformation sequence, arthrogryposis multiplex congenita, and bilateral clubfeet: Is motor assess- ment of additional value for in utero diagnosis? A 10-year cohort study. Prenat Diagn 2019;39:219–231. DOI: 10.1002/pd.5411.
Honemeyer U, Talic A, et al. The clinical value of KANET in studying fetal neurobehavior in normal and at-risk pregnancies. J Perinat Med 2012 Sep 28;1–11.